Cuproptosis was a copper-dependent and unique kind of cell death that was separate from existing other forms of cell death. The last decade has witnessed a considerable increase in investigations of programmed cell death, and whether copper induced cell death was an independent form of cell death has long been argued until mechanism of cuproptosis has been revealed. After that, increasing number of researchers attempted to identify the relationship between cuproptosis and the process of cancer. Thus, in this review, we systematically detailed the systemic and cellular metabolic processes of copper and the copper-related tumor signaling pathways. Moreover, we not only focus on the discovery process of cuproptosis and its mechanism, but also outline the association between cuproptosis and cancers. Finally, we further highlight the possible therapeutic direction of employing copper ion ionophores with cuproptosis-inducing functions in combination with small molecule drugs for targeted therapy to treat specific cancers.
The p53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis, resulting in higher intracellular NADPH, lower reactive oxygen species (ROS) and autophagy activity. In this study, we investigated whether TIGAR might exert dual impacts on cancer cell survival based on its ability to inhibit both apoptosis and autophagy. In liver or lung cancer cells treated with the anticancer drug epirubicin, TIGAR levels increased in a dose-and time-dependent manner. TIGAR silencing enhanced epirubicin-induced elevations in ROS levels and apoptosis rates, in a manner that was blocked by ectopic addition of NADPH or N-acetyl cysteine. These findings were correlated with reduced tumorigenicity and increased chemosensitivity in mouse xenograft tumor assays. In parallel, TIGAR silencing also enhanced the epirubicin-induced activation of autophagy, in a manner that was also blocked by ectopic addition of NADPH. Notably, TIGAR silencing also licensed epirubicin-mediated inactivation of the mTOR pathway, suggesting TIGAR also exerted a negative impact on autophagy. However, genetic or pharmacologic inhibition of autophagy increased epirubicin-induced apoptosis in TIGAR-silenced cells. Overall, our results revealed that TIGAR inhibits both apoptosis and autophagy, resulting in a dual impact on tumor cell survival in response to tumor chemotherapy. Cancer Res; 74(18); 5127-38. Ó2014 AACR.
The results highlight the roles of complement system, inflammatory and immune response, and blood coagulation in the pathogenesis of GDM. The panel of four candidate proteins could distinguish women subsequently developed with GDM from controls with high sensitivity and specificity.
Previous study revealed that the protective effect of TIGAR in cell survival is
mediated through the increase in PPP (pentose phosphate pathway) flux. However, it
remains unexplored if TIGAR plays an important role in DNA damage and repair. This
study investigated the role of TIGAR in DNA damage response (DDR) induced by
genotoxic drugs and hypoxia in tumor cells. Results showed that TIGAR was increased
and relocated to the nucleus after epirubicin or hypoxia treatment in cancer cells.
Knockdown of TIGAR exacerbated DNA damage and the effects were partly reversed by
the supplementation of PPP products NADPH, ribose, or the ROS scavenger NAC. Further
studies with pharmacological and genetic approaches revealed that TIGAR regulated
the phosphorylation of ATM, a key protein in DDR, through Cdk5. The Cdk5-AMT signal
pathway involved in regulation of DDR by TIGAR defines a new role of TIGAR in cancer
cell survival and it suggests that TIGAR may be a therapeutic target for
cancers.
Premature ovarian failure (POF) contributes to amenorrhoea, infertility, early onset of menostasia and osteoporosis. This study profiled differentially expressed miRNAs for association with POF development. Ovarian tissue samples from 4-vinylcyclohexene diepoxide (VCD)-induced rat POF and normal rats were profiled for differentially expressed miRNAs using miRNA microarrays. A total of 63 miRNAs were up-regulated and 20 miRNAs were down-regulated in rat POF tissues versus the control tissues. qRT-PCR verified some of these altered miRNAs, i.e. miR-29a and miR-144 were down-regulated in POF tissues, which may target expression of PLA2G4A that is involved in prostaglandin biosynthesis, whereas miR-27b and miR-190 were up-regulated in POF tissues by negative control of PAPPA and CCL2 expression, respectively, both of which have been shown to relate to response to hormone stimulus. Moreover, the up-regulated miR-151 and miR-672 can also target expression of TNFSF10 and FNDC1, which have been shown to positively regulate cell apoptosis. Profiling of differentially expressed miRNAs in POF provided a novel insight into the molecular events involving the role of miRNAs in POF development with specific emphasis upon miR-27b, miR-190, miR-151, miR-672, miR-29a and miR-144.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.