In this study, the Mo-electrode thin films were deposited by a two-stepped process, and the high-purity copper indium selenide-based powder (CuInSe2, CIS) was fabricated by hydrothermal process by Nanowin Technology Co. Ltd. From the X-ray pattern of the CIS precursor, the mainly crystalline phase was CIS, and the almost undetectable CuSe phase was observed. Because the CIS powder was aggregated into micro-scale particles and the average particle sizes were approximately 3 to 8 μm, the CIS power was ground into nano-scale particles, then the 6 wt.% CIS particles were dispersed into isopropyl alcohol to get the solution for spray coating method. Then, 0.1 ml CIS solution was sprayed on the 20 mm × 10 mm Mo/glass substrates, and the heat treatment for the nano-scale CIS solution under various parameters was carried out in a selenization furnace. The annealing temperature was set at 550°C, and the annealing time was changed from 5 to 30 min, without extra Se content was added in the furnace. The influences of annealing time on the densification, crystallization, resistivity (ρ), hall mobility (μ), and carrier concentration of the CIS absorber layers were well investigated in this study.
Molecular mechanisms and pathological features of p-Cresyl sulfate (PCS)-induced uremic lung injury (ULI) in chronic kidney disease (CKD) remain unclear. We analyzed pleural effusions (PE) from CKD and non-CKD patients for uremic toxins, reactive oxygen species (ROS), and chemotactic cytokines. Correlations between PE biomarkers and serum creatinine were also studied. Cell viability and inflammatory signaling pathways were investigated in PCS-treated human alveolar cell model. To mimic human diseases, CKD-ULI mouse model was developed with quantitative comparison of immunostaining and morphometric approach. PE from CKD patients enhance expressions of uremic toxins, hydroxyl radicals, and IL-5/IL-6/IL-8/IL-10/IL-13/ENA-78/GRO α/MDC/thrombopoietin/VEGF. PE concentrations of ENA-78/VEGF/IL-8/MDC/PCS/indoxyl sulphate correlate with serum creatinine concentrations. In vitro, PCS promotes alveolar cell death, cPLA2/COX-2/aquaporin-4 expression, and NADPH oxidase/mitochondria activation-related ROS. Intracellular ROS is abrogated by non-specific ROS scavenger N-acetyl cysteine (NAC), inhibitors of NADPH oxidase and mitochondria-targeted superoxide scavenger. However, only NAC protects against PCS-induced cell death. In vivo, expressions of cPLA2/COX2/8-OHdG, resident alveolar macrophages, recruited leukocytes, alveolar space, interstitial edema and capillary leakage increase in lung tissues of CKD-ULI mice, and NAC pretreatment ameliorates alveolar–capillary injury. PCS causes alveolar–capillary injury through triggering intracellular ROS, downstream prostaglandin pathways, cell death, and activating leukocytes to release multiplex chemoattractants and extracellular ROS. Thus PCS and nonspecific ROS serve as potential therapeutic targets.
Background: Interactions and joint effects of galectin-3 and vascular cell adhesion molecule 1 (VCAM-1) on risks of all-cause and cardiovascular (CV) mortality remain unclear in patients with maintenance hemodialysis (MHD). Methods: Unadjusted and adjusted hazard ratios (aHRs) of mortality risks were analyzed between higher and lower concentration groups of serum galectin-3 and VCAM-1. The modification effect between serum galectin-3 and VCAM-1 on mortality risk was investigated using an interaction product term. Results: During follow-up, galectin-3 and VCAM-1 were associated with incremental risks of all-cause mortality (aHR: 1.038 (95% confidence interval (CI): 1.001–1.077) and 1.002 (95% CI: 1.001–1.003), respectively). Nonetheless, VCAM-1 but not galectin-3 predicted CV mortality (aHR: 1.043 (95% CI: 0.993–1.096) and 1.002 (95% CI: 1.001–1.003), respectively). In the interaction analysis, patients with combined higher galectin-3 (>29.5 ng/mL) and VCAM-1 (>1546.9 ng/mL) were at the greatest risk of all-cause and CV mortality (aHR: 4.6 (95% CI: 1.6–13.4), and 4.2 (95% CI: 1.3–14.4), respectively). The interactions between galectin-3 and VCAM-1 with respect to all-cause and CV mortality were statistically significant (p < 0.01 and < 0.05, respectively). Conclusion: Galectin-3 and VCAM-1 could serve as a promising dual biomarker for prognostic assessment, considering their joint effects on pathogenesis of leukocyte trafficking and atherothrombosis.
Background: Interactions and early warning effects of non-hepatic alkaline phosphatase (NHALP) and high-sensitivity C-reactive protein (hs-CRP) on the progression of vertebral fractures (VFs) in patients with rheumatoid arthritis (RA) remain unclear. We aim to explore whether serum concentrations of NHALP and hs-CRP could serve as a promising dual biomarker for prognostic assessment of VF progression. Methods: Unadjusted and adjusted hazard ratios (aHRs) of VF progression were calculated for different categories of serum NHALP and hs-CRP using the Cox regression model in RA patients. The modification effect between serum NHALP and hs-CRP on VF progression was determined using an interaction product term. Results: During 4489 person-years of follow-up, higher NHALP (>125 U/L) and hs-CRP (>3.0 mg/L) were robustly associated with incremental risks of VF progression in RA patients (aHR: 2.2 (95% confidence intervals (CIs): 1.2–3.9) and 2.0 (95% CI: 1.3–3.3) compared to the lowest HR category, respectively). The interaction between NHALP and hs-CRP on VF progression was statistically significant (p < 0.05). In the stratified analysis, patients with combined highest NHALP and hs-CRP had the greatest risk of VF progression (aHR: 4.9 (95% CI: 2.5–9.6)) compared to the lowest HR group (NHALP < 90 U/L and hs-CRP < 1 mg/L). Conclusions: In light of underdiagnoses of VFs and misleading diagnosis by single test, NHALP and hs-CRP could serve as compensatory biomarkers to predict subclinical VF progression in RA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.