Microbial Geotechnology is a new branch of geotechnical engineering that deals with the applications of microbiological methods to geological materials used in engineering. The aim of these applications is to improve the mechanical properties of soil so that it will be more suitable for construction or environmental purposes. Two notable applications, bioclogging and biocementation, have been explored. Bioclogging is the production of pore-filling materials through microbial means so that the porosity and hydraulic conductivity of soil can be reduced. Biocementation is the generation of particle-binding materials through microbial processes in situ so that the shear strength of soil can be increased. The most suitable microorganisms for soil bioclogging or biocementation are facultative anaerobic and microaerophilic bacteria, although anaerobic fermenting bacteria, anaerobic respiring bacteria, and obligate aerobic bacteria may also be suitable to be used in geotechnical engineering. The majority of the studies on Microbial Geotechnology at present are at the laboratory stage. Due to the complexity, the applications of Microbial Geotechnology would require an integration of microbiology, ecology, geochemistry, and geotechnical engineering knowledge.
In this paper, the problem of sampled-data synchronization for Markovian jump neural networks with time-varying delay and variable samplings is considered. In the framework of the input delay approach and the linear matrix inequality technique, two delay-dependent criteria are derived to ensure the stochastic stability of the error systems, and thus, the master systems stochastically synchronize with the slave systems. The desired mode-independent controller is designed, which depends upon the maximum sampling interval. The effectiveness and potential of the obtained results is verified by two simulation examples.
Consideration of soil as a living ecosystem offers the potential for innovative and sustainable solutions to geotechnical problems. This is a new paradigm for many in geotechnical engineering. Realising the potential of this paradigm requires a multidisciplinary approach that embraces biology and geochemistry to develop techniques for beneficial ground modification. This paper assesses the progress, opportunities, and challenges in this emerging field. Biomediated geochemical processes, which consist of a geochemical reaction regulated by subsurface microbiology, currently being explored include mineral precipitation, gas generation, biofilm formation and biopolymer generation. For each of these processes, subsurface microbial processes are employed to create an environment conducive to the desired geochemical reactions among the minerals, organic matter, pore fluids, and gases that constitute soil. Geotechnical applications currently being explored include cementation of sands to enhance bearing capacity and liquefaction resistance, sequestration of carbon, soil erosion control, groundwater flow control, and remediation of soil and groundwater impacted by metals and radionuclides. Challenges in biomediated ground modification include upscaling processes from the laboratory to the field, in situ monitoring of reactions, reaction products and properties, developing integrated biogeochemical and geotechnical models, management of treatment by-products, establishing the durability and longevity/reversibility of the process, and education of engineers and researchers.
Results of some constant shear-drained (CSD) tests conducted on both loose and dense sand are presented. Using the critical state line and a modified state parameter, a new framework for analysing the instability of granular soil slopes is proposed. The test data were examined and interpreted using the new framework. Instability lines for sand with different void ratios were established within this framework. The conditions for the occurrence of instability in both contractive and dilative granular soil slopes under various shear stress levels were examined using the proposed framework.Key words: deformation, laboratory tests, liquefaction, sands, shear strength, slope stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.