Despite being one of the most common rheumatologic diseases, there is still no disease-modifying drug for primary Sjögren's syndrome (pSS). Advancing our knowledge of the target tissue has been limited by the low dimensionality of histology techniques and the small size of human salivary gland biopsies. In this study, we took advantage of a molecularly validated mouse model of pSS to characterize tissue-infiltrating CD4 T cells and their regulation by the lymphotoxin/LIGHT signaling axis. Novel cell subsets were identified by combining highly dimensional flow and mass cytometry with transcriptomic analyses. Pharmacologic modulation of the LTβR signaling pathway was achieved by treating mice with LTβR-Ig, a therapeutic intervention currently being tested in pSS patients (Baminercept trial NCT01552681). Using these approaches, we identified two novel CD4 T cell subsets characterized by high levels of PD1: Prdm1 effector regulatory T cells expressing immunoregulatory factors, such as Il10, Areg, Fgl2, and Itgb8, and Il21 effector conventional T cells expressing a pathogenic transcriptional signature. Mirroring these observations in mice, large numbers of CD4PD1 T cells were detected in salivary glands from Sjögren's patients but not in normal salivary glands or kidney biopsies from lupus nephritis patients. Unexpectedly, LTβR-Ig selectively halted the recruitment of PD1 naive, but not PD1, effector T cells to the target tissue, leaving the cells with pathogenic potential unaffected. Altogether, this study revealed new cellular players in pSS pathogenesis, their transcriptional signatures, and differential dependency on the lymphotoxin/LIGHT signaling axis that help to interpret the negative results of the Baminercept trial and will guide future therapeutic interventions.
The purpose of the present studies was to use CyTOF and RNA-Seq technologies to identify cells and genes involved in lacrimal gland repair that could be targeted to treat diseases of lacrimal gland dysfunction. Lacrimal glands of female BALB/c mice were experimentally injured by intra-glandular injection of interleukin 1 alpha (IL-1α). The lacrimal glands were harvested at various time points following injury (1 to 14 days) and used to either prepare single cell suspensions for CyTOF immuno-phenotyping analyses or to extract RNA for gene expression studies using RNA-Seq. CyTOF immuno-phenotyping identified monocytes and neutrophils as the major infiltrating populations 1 and 2 days post injury. Clustering of significantly differentially expressed genes identified 13 distinct molecular signatures: 3 associated with immune/inflammatory processes included genes up-regulated at days 1–2 and 3 associated with reparative processes with genes up-regulated primarily between days 4 and 5. Finally, clustering identified 65 genes which were specifically up-regulated 2 days post injury which was enriched for muscle specific genes. The expression of select muscle-related proteins was confirmed by immunohistochemistry which identified a subset of cells expressing these proteins. Double staining experiments showed that these cells are distinct from the myoepithelial cells. We conclude that experimentally induced injury to the lacrimal gland leads to massive infiltration by neutrophils and monocytes which resolved after 3 days. RNAseq and immunohistochemistry identified a group of cells, other than myoepithelial cells, that express muscle-related proteins that could play an important role in lacrimal gland repair.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.