The breakthrough of deep learning has started a technological revolution in various areas such as object identification, image/video recognition and semantic segmentation. Neural network, which is one of representative applications of deep learning, has been widely used and developed many efficient models. However, the edge implementation of neural network inference is restricted because of conflicts between the high computation and storage complexity and resource-limited hardware platforms in applications scenarios. In this paper, we research neural networks which are involved in the acceleration on FPGA-based platforms. The architecture of networks and characteristics of FPGA are analyzed, compared and summarized, as well as their influence on acceleration tasks. Based on the analysis, we generalize the acceleration strategies into five aspects—computing complexity, computing parallelism, data reuse, pruning and quantization. Then previous works on neural network acceleration are introduced following these topics. We summarize how to design a technical route for practical applications based on these strategies. Challenges in the path are discussed to provide guidance for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.