A motivating and fun activity for
students in introductory chemistry
has been designed to increase familiarity with the chemical elements,
symbols, and atomic numbers in the periodic table. This activity, Elemental Knock-Out, is a table tennis game, and the gameplay
is adapted from a box grid baseball game. Playing in teams for fun
and enjoyment, students work cooperatively with others to compete
against an opposing team. The game is designed for first-year undergraduate
students. The cost of one set of game materials is less than $50.
The average time required to complete one game, i.e., to become familiar
with the chemical elements and atomic numbers, is about 120 min for
a class of 60 students. This game was implemented with 118 students
including different grade classes. The results were interpreted through
poll and quiz before and after the activity. The results of the study
revealed that most of the students had positive impressions of the
game and considered it to be a fun way of interacting with the concepts.
The quiz test also showed an increase of average score of the students
by playing the game. Table tennis is a sport that anybody at any age
can play. Therefore, this game should facilitate the promotion of
knowledge of chemistry, e.g., the periodic table of the elements,
to the target student group.
In this work, we present a Ag@Au nanoprism-metal-organic framework-paper based glucose sensor for rapid, sensitive, single-use and quantitative glucose determination in human serum. To achieve painless measurement of glucose with a non-invasive detection methodology, this biosensor was further tested in human urine. In this approach, a new hybrid-Ag@Au nanoprism loaded in close proximity to micrometer sized coordination polymers as phosphorescent luminophores significantly enhanced the emission intensity due to metal-enhanced phosphorescence and worked as reaction sites to support more dissolved oxygen. Reports of enhanced phosphorescence intensity are relatively rare, especially at room temperature. The true enhancement factor of Ag@Au-phosphorescent metal-organic frameworks on paper was deduced to be 110-fold, making it a better optical type glucose meter. The results demonstrate the validity of the intensity enhancement effect of the excitation of the overlap of the emission band of a luminophore with the surface plasmon resonance band of Ag@Au nanoprisms. Ag@Au nanoprisms were used not only to improve the detection limit of glucose sensing but also to extend the glucose sensing range by enhancing the oxygen oxidation efficiency. The oxidation of glucose as glucose oxidase is accompanied by oxygen consumption, which increases the intensity of the phosphorescence emission. The turn-on type paper-based biosensor exhibits a rapid response (0.5 s), a low detection limit (0.038 mM), and a wide linear range (30 mM to 0.05 mM), as well as good anti-interference, long-term longevity and reproducibility. Finally, the biosensor was successfully applied to the determination of glucose in human serum and urine.
In this work, we present a facile preparation of a paper-based glucose assay for rapid, sensitive, and quantitative measurement of glucose in blood plasma and urine. Two copper phosphorescent complexes [Cu(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu1) and [Cu(2,9-dimethyl-1,10-phenanthroline)(2,6-dimethylphenylisocyanide)2][B(C6H3(CF3)2)4] (Cu2) and a new silver congener [Ag(P3)CNAg(P3)][B(C6H3(CF3)2)4] (Ag3) (P3 = PPh2C6H4-PPh-C6H4PPh2 [bis(o-diphenylphosphinophenyl)phenylphosphine]) have been synthesized and their oxygen sensing abilities were investigated. The dimetallic phosphine-based Ag3 complex, having a high oxygen sensing ability, was employed as an efficient signal transducer in enzymatic reactions to recognize blood plasma glucose and urine glucose, which provided a wide linear response for a concentration range between 1.0 and 35 mM and a rapid response, with a limit of detection (LOD) of 0.09 mM for glucose. In practical application, this Ag3 paper-based device offers great analytical reliability and accuracy upon monitoring glucose concentrations in blood plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.