A pandemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection broke out all over the world; however, epidemiological data and viral shedding in pediatric patients are limited. We conducted a retrospective, Chun-Zhen Hua and Zi-Ping Miao contributed equally to this study.
Abstract. Significant antitumor activity of Momordica anti-human immunodeficiency virus protein of 30 kDa (MAP30) purified from Momordica charantia has been the subject of previous research. However, the effective mechanism of MAP30 on malignant glioma cells has not yet been clarified. The aim of the present study was to investigate the effects and mechanism of MAP30 on U87 and U251 cell lines. A Cell Counting Kit-8 assay, wound healing assay and Transwell assay were used to detect the effects on U87 and U251 cells treated with different concentrations of MAP30 (0.5, 1, 2, 4, 8 and 16 µM) over different periods of time. Proliferation, migration and invasion of each cell line were markedly inhibited by MAP30 in a dose-and time-dependent manner. Flow cytometry and fluorescence staining demonstrated that apoptosis increased and the cell cycle was arrested in S-phase in the two investigated cell lines following MAP30 treatment. Western blot analysis demonstrated that leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) expression and key proteins in the Wnt/β-catenin signaling pathway were apparently decreased, whereas second mitochondria-derived activator of caspase (Smac) protein expression significantly increased with MAP30 treatment in the same manner. These results suggest that MAP30 markedly induces apoptosis in U87 and U251 cell lines by suppressing LGR5 and the Wnt/β-catenin signaling pathway, and enhancing Smac expression in a dose-and time-dependent manner.
Caffeine (CA) is accepted as a probe of cytochrome P450 1A2 enzyme (CYP1A2) activity and is commonly used in premature infants with great inter‐individual variability of metabolism. To evaluate the change characteristics of CYP1A2 activity in premature infants, an ultra‐high‐performance liquid chromatography–tandem mass spectrometry method was developed and optimized for the simultaneous quantitation of serum CA and its major metabolites, including paraxanthine (PX), theophylline (TP) and theobromine (TB), in premature infants. A C18 column and gradient elution with 0.1% formic acid in methanol and 0.1% formic acid in water at a flow rate of 0.3 mL/min were used for compound separation. The mass spectrometer monitored the transitions of CA (m/z 195.0 → 138.0), CA‐d9 (m/z 204.0 → 144.1), PX (m/z 181.0 → 124.1), TP (m/z 181.0 → 123.9) and TB (m/z 181.0 → 138.0) using multiple reaction monitoring in positive ion mode. CYP1A2 activity was evaluated by serum molar concentration ratios of CA and its metabolites. The results showed that CYP1A2 has a significant positive correlation with the clearance of CA, and was affected by current weight and CYP1A2*1C. The results suggested that the serum concentration ratios of CA metabolites could be used to predict the changes in CYP1A2 enzyme activity in premature infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.