A series of potential biomarkers including tyrosine, creatinine, linoleic acid, β-hydroxybutyric acid and ornithine have been identified by metabolomic profiling, which may be used to identify the metabolic changes during hyperlipidemia progression.
Ex vivo expansion of endothelial progenitor cells (EPCs) may be a promising strategy to overcome the clinical problem of limited cell numbers. As the culture medium is the key for the cell characteristics, the effects of different culture media on EPCs were investigated in the present study. Rat bone marrow mononuclear cells were cultured in different media, including M-199 media with 20% fetal bovine serum (FBS) and bovine pituitary extract (M1); M-199 media with 10% FBS, 20 ng/ml vascular endothelial growth factor (VEGF) and 10 ng/ml basic fibroblast growth factor (bFGF; M2) or epidermal growth medium (EGM)-2MV media. The cell morphology and biological functions, such as proliferation, adhesion, migration, tube formation and nitric oxide (NO) production were subsequently assayed in vitro. Moreover, endothelial biomarkers and apoptosis were also analyzed. The results showed that endothelial‑like cells appeared in all of the culture systems. First‑passage cells, namely early EPCs, tended to form colonies in M2 and EGM-2MV media but showed a fusiform shape in M1 media. The 3rd or 4th generation EPCs, namely late EPCs, cultured in EGM-2MV media exhibited increased adhesion, migration, tube formation and NO production as compared with EPCs in M1 or M2 media. Furthermore, late EPCs cultured in EGM-2MV expressed higher levels of endothelial cell markers, such as von Willibrand factor (vWF)and CD31, but relatively greater levels of apoptosis were observed. In conclusion, cell culture conditions, for example the medium used, affects the biological properties of bone marrow-derived early and late EPCs.
N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA modification. m6A modification is a dynamic and reversible post-transcriptional regulatory modification, initiated by methylase and removed by RNA demethylase. m6A-binding proteins recognise the m6A modification to regulate gene expression. Recent studies have shown that altered m6A levels and abnormal regulator expression are crucial in the ageing process and the occurrence of age-related diseases. In this review, we summarise some key findings in the field of m6A modification in the ageing process and age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases (CVDs). We focused on the biological function and potential molecular mechanisms of m6A RNA methylation in ageing and age-related disease progression. We believe that m6A modification may provide a new target for anti-ageing therapies.
The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral non-sensory region. Here we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear non-sensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane, a flattened spiral prominence, and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the non-sensory epithelium covering the outer border Claudius cells, outer sulcus root cells and spiral prominence epithelial cells. Transcriptome analysis shows ZBTB20 regulates genes coding for tectorial membrane proteins in the greater epithelial ridge, and those preferentially expressed in root cells and spiral prominence epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral non-sensory domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.