A family of genes including ETR1, ETR2, EIN4, ERS1, and ERS2 is implicated in ethylene perception in Arabidopsis thaliana. As only dominant mutations were previously available for these genes, it was unclear whether all of them are components in the ethylene signaling pathway and whether they code for positive or negative regulators of ethylene responses. In this study, we have isolated loss-of-function mutations of four of these genes (ETR1, ETR2, EIN4, and ERS2) and identified an ethylene-independent role of ETR1 in promoting cell elongation. Quadruple mutants had constitutive ethylene responses, revealing that these proteins negatively regulate ethylene responses and that the induction of ethylene response in Arabidopsis is through inactivation rather than activation of these proteins.
Plant growth homeostasis and defense responses are regulated by BONZAI1 (BON1), an evolutionarily conserved gene. Here, we show that growth regulation by BON1 is mediated through defense responses. BON1 is a negative regulator of a haplotype-specific Resistance (R) gene SNC1. The bon1-1 loss-of-function mutation activates SNC1, leading to constitutive defense responses and, consequently, reduced cell growth. In addition, a feedback amplification of the SNC1 gene involving salicylic acid is subject to temperature control, accounting for the regulation of growth and defense by temperature in bon1-1 and many other mutants. Thus, plant growth homeostasis involves the regulation of an R gene by BON1 and the intricate interplay between defense responses and temperature responses.
ERS (ethylene response sensor), a gene in the Arabidopsis thaliana ethylene hormone-response pathway, was uncovered by cross-hybridization with the Arabidopsis ETR1 gene. The deduced ERS protein has sequence similarity with the amino-terminal domain and putative histidine protein kinase domain of ETR1, but it does not have a receiver domain as found in ETR1. A missense mutation identical to the dominant etr1-4 mutation was introduced into the ERS gene. The altered ERS gene conferred dominant ethylene insensitivity to wild-type Arabidopsis. Double-mutant analysis indicates that ERS acts upstream of the CTR1 protein kinase gene in the ethylene-response pathway.
The plant hormone ethylene regulates a variety of processes of growth and development. To identify components in the ethylene signal transduction pathway, we screened for ethylene-insensitive mutants in Arabidopsis thaliana and isolated a dominant etr2-1 mutant. The etr2-1 mutation confers ethylene insensitivity in several processes, including etiolated seedling elongation, leaf expansion, and leaf senescence. Double mutant analysis indicates that ETR2 acts upstream of CTR1, which codes for a Raf-related protein kinase. We cloned the ETR2 gene on the basis of its map position, and we found that it exhibits sequence homology to the ethylene receptor gene ETR1 and the ETR1-like ERS gene. ETR2 may thus encode a third ethylene receptor in Arabidopsis, transducing the hormonal signal through its ''twocomponent'' structure. Expression studies show that ETR2 is ubiquitously expressed and has a higher expression in some tissues, including inf lorescence and f loral meristems, petals, and ovules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.