Optical modulators are at the heart of optical communication links. Ideally, they should feature low insertion loss, low drive voltage, large modulation bandwidth, high linearity, compact footprint and low manufacturing cost. Unfortunately, these criteria have only been achieved on separate occasions. Based on a Silicon and Lithium Niobate hybrid integration platform, we demonstrate Mach-Zehnder modulators that simultaneously fulfill these criteria. The presented device exhibits an insertion loss of 2.5 dB, voltage-length product of 2.2 V•cm, high linearity, electro-optic bandwidth of at least 70 GHz and modulation rates up to 112 Gbit/s. The high-performance modulator is realized by seamless integration of highcontrast waveguide based on Lithium Niobate -the most mature modulator material -with compact, low-loss silicon circuits. The hybrid platform demonstrated here allows for the combination of "best-in-breed" active and passive components, opening up new avenues for enabling future high-speed, energy efficient and cost-effective optical communication networks.
The coherent transmission technology using digital signal processing and advanced modulation formats, is bringing networks closer to the theoretical capacity limit of optical fibres, the Shannon limit. The in-phase/quadrature electro-optic modulator that encodes information on both the amplitude and the phase of light, is one of the underpinning devices for the coherent transmission technology. Ideally, such modulator should feature a low loss, low drive voltage, large bandwidth, low chirp and compact footprint. However, these requirements have been only met on separate occasions. Here, we demonstrate integrated thin-film lithium niobate in-phase/quadrature modulators that fulfil these requirements simultaneously. The presented devices exhibit greatly improved overall performance (half-wave voltage, bandwidth and optical loss) over traditional lithium niobate counterparts, and support modulation data rate up to 320 Gbit s −1. Our devices pave new routes for future highspeed, energy-efficient, and cost-effective communication networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.