Alternative splicing of Wt1 results in the insertion or omission of the three amino acids KTS between zinc fingers 3 and 4. In vitro experiments suggest distinct molecular functions for + and -KTS isoforms. We have generated mouse strains in which specific isoforms have been removed. Heterozygous mice with a reduction of +KTS levels develop glomerulosclerosis and represent a model for Frasier syndrome. Homozygous mutants of both strains die after birth due to kidney defects. Strikingly, mice lacking +KTS isoforms show a complete XY sex reversal due to a dramatic reduction of Sry expression levels. Our data demonstrate distinct functions for the two splice variants and place the +KTS variants as important regulators for Sry in the sex determination pathway.
Glomerular disease is one of the most common causes of end-stage renal failure. Increasing evidence suggests that these glomerulopathies are frequently caused by primary lesions in the renal podocytes. One of the major consequences of podocyte lesions is the accumulation of mesangial matrix in the glomerular basement membrane, a process called glomerulosclerosis. Mesangial sclerosis is one of the most consistent findings in Denys-Drash patients and can be caused by dominant mutations in the Wilms' tumor 1 gene (WT1). The underlying mechanism, however, is poorly understood. WT1 is expressed in the podocytes throughout life, but its function in this cell type is unknown. Combining Wt1-knockout and inducible yeast artificial chromosome transgenic mouse models, we demonstrate that reduced expression levels of WT1 result in either crescentic glomerulonephritis or mesangial sclerosis depending on the gene dosage. Strikingly, the two podocyte-specific genes nphs1 and podocalyxin are dramatically downregulated in mice with decreased levels of Wt1, suggesting that these two genes act downstream of Wt1. Taken together, our data provide genetic evidence that reduced levels of Wt1 are responsible for the pathogenesis of two distinct renal diseases and offer a molecular explanation for the increased occurrence of glomerulosclerosis in patients with WAGR syndrome.
Although enhanced activation of the EGF receptor (EGFR) associates with the development and progression of renal fibrosis, the mechanisms linking these observations are not completely understood. Here, after unilateral ureteral obstruction (UUO), wild-type mice exhibited sustained EGFR phosphorylation in the kidney and developed renal fibrosis that was more severe than the renal fibrosis observed in waved-2 mice, which have reduced EGFR tyrosine kinase activity. Waved-2 mice also showed fewer renal tubular cells arrested at G2/M, reduced expression of a-smooth muscle actin (a-SMA), downregulation of multiple genes encoding profibrogenic cytokines, including TGF-b1, and dephosphorylation of Smad3, STAT3, and ERK1/2. Administration of the specific EGFR inhibitor gefitinib recapitulated this phenotype in wild-type mice after UUO. Furthermore, inactivation of either EGFR or STAT3 reduced UUO-induced expression of lipocalin-2, a molecule associated with the pathogenesis of CKD. In cultured renal interstitial fibroblasts, inhibition of EGFR also abrogated TGF-b1-or serum-induced phosphorylation of EGFR, STAT3, ERK1/2, and Smad3 as well as expression of a-SMA and extracelluar matrix proteins. Taken together, these data suggest that EGFR may mediate renal fibrogenesis by promoting transition of renal epithelial cells to a profibrotic phenotype, increased production of inflammatory factors, and activation of renal interstitial fibroblasts. Inhibition of EGFR may have therapeutic potential for fibrotic kidney disease.
The mammalian kidney is a highly complex organ that requires the precise structural arrangement of multiple cell types for effective function. The need to filter large volumes of plasma at the glomerulus followed by active reabsorption of nearly 99% of that filtrate by the tubules creates vulnerability in both compartments for cell injury. Thus maintenance of cell viability and replacement of those cells that are lost are essential for functional stability of the kidney. This review addresses our current understanding of how cells from the glomerular, tubular, and interstitial compartments arise during development and the manner in which they may be regenerated in the adult organ. In addition, we discuss the data regarding the role of organ-specific and bone marrow-derived stem and progenitor cells in the replacement/repair process, as well as the potential for ex vivo programming of stem cells toward a renal lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.