Bismuth-coated carbon electrodes display an attractive stripping voltammetric performance which compares favorably with that of common mercury-film electrodes. These bismuth-film electrodes are prepared by adding 400 microg/L (ppb) bismuth(III) directly to the sample solution and simultanously depositing the bismuth and target metals on the glassy-carbon or carbon-fiber substrate. Stripping voltammetric measurements of microgram per liter levels of cadmium, lead, thallium, and zinc in nondeaerated solutions yielded well-defined peaks, along with a low background, following short deposition periods. Detection limit of 1.1 and 0.3 ppb lead are obtained following 2- and 10-min deposition, respectively. Changes in the peak potentials (compared to those observed at mercury electrodes) offer new selectivity dimensions. Scanning electron microscopy sheds useful insights into the different morphologies of the bismuth deposits on the carbon substrates. The in situ bismuth-plated electrodes exhibit a wide accessible potential window (-1.2 to -0.2 V) that permits quantitation of most metals measured at mercury electrodes (except of copper, antimony, and bismuth itself). Numerous key experimental variables have been characterized and optimized. High reproducibility was indicated from the relative standard deviations (2.4 and 4.4%) for 22 repetitive measurements of 80 microg/L cadmium and lead, respectively. Such an attractive use of "mercury-free", environmetally friendly electrodes (with a performance equivalent to that of mercury ones) offers great promise to centralized and decentralized testing of trace metals.
The Qinghai-Tibet Plateau, especially the northeastern region, is not a pure land any more due to recently increasing anthropogenic activities. This study collected soil samples from 70 sites of the northeastern Qinghai-Tibet Plateau to evaluate pollution, ecological-health risks, and possible pollution sources of heavy metals. The concentrations of heavy metals in soil were relatively high. Values of geo-accumulation index exhibited that Hg pollution was the most serious meanwhile Hg possessed the strongest enrichment feature based on enrichment factor values. The modified degrees of contamination showed that about 54.3% and 17.1% of sampling sites were at moderate and high contamination degree while pollution load indexes illustrated that 72.9% and 27.1% of sampling sites possessed moderate and high contamination level, respectively. Ecological risk indexes of heavy metals in soil ranged from 234.6 to 3759.0, suggesting that most of sites were under considerable/very high risks. Cancer risks for adults and children were determined as high and high-very high levels while non-cancer risks for children were high although those for adults were low. Industrial source contributed to the main fraction of ecological and health risks. Summarily speaking, heavy metals in soil of the study area has caused significantly serious pollution and exerted high potential ecological and health risks, especially for children who are more susceptible to hurt from pollutants. Therefore, more efficient and strict pollution control and management in study area should be put out as soon as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.