MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1.
Serum OPG may be a useful biomarker for early diagnosis of CKD-MBD.
Gastric intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development. Therefore, the mechanism of IM has been the focus of basic and clinical research. Helicobacter pylori (H. pylori) infection has been recognized as the main pathogenesis of gastric IM. However, more and more studies have shown that chronic inflammation of gastric mucosa caused by bile reflux is the key pathogenic factor of gastric IM. Bile reflux activates the expression of IM biomarkers via the bile acid receptor. In addition, microRNAs, exosomes, and epigenetics are also involved in the occurrence and development of bile acid-induced gastric IM. Currently, the relevant research is still very few. The molecular mechanism of the phenotypic transformation of gastrointestinal epithelial cells induced by bile acids has not been fully understood. This article mainly reviews the physiology and pathology of bile acid, mechanism of gastric IM induced by bile acid, bile acid receptors, and so on, in order to provide reference for further research.
Background The significance of S100A8/A9 and S100A12 in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) has not been clarified. This study was dedicated to exploring the potential pathogenic roles of S100A8/A9 and S100A12 in patients with myeloperoxidase (MPO)-ANCA-positive vasculitis. Methods Serum and urine concentrations of S100A8/A9 and S100A12 of forty-two AAV patients were evaluated. The influence of S100A8/A9 and S100A12 on the chemotaxis, the apoptosis, the release of IL-1β, the complement activation, the respiratory burst, as well as the neutrophil extracellular traps (NETs) formation of MPO-ANCA-activated neutrophils was investigated. Results The serum and urine S100A8/A9 and S100A12 of active MPO-AAV significantly increased (compared with inactive AAV and healthy controls, p < 0.001) and were correlated with the severity of the disease. In vitro study showed that S100A8/A9 and S100A12 activated the p38 MAPK/NF-κB p65 pathway, increased the chemotaxis index (CI) and the release of IL-1β, extended the life span, and enhanced the complement activation ability of MPO-ANCA-activated neutrophils. The Blockade of TLR4 and RAGE inhibited the effects of S100A8/A9 and S100A12. All above-mentioned effects of S100A8/A9 and S100A12 were ROS-independent because neither S100A8/A9 nor S100A12 enhanced the ROS formation and NETs formation of MPO-ANCA-activated neutrophils. Conclusion S100A8/A9 and S100A12 serve as markers for assessing the disease severity, and they may also play a role in MPO-AAV pathogenesis.
Rationale:The relationship between antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) and ANCA-negative vasculitis has not been elucidated.Patient concerns:A 64-year-old female with edema and proteinuria was admitted. A kidney biopsy indicated focal proliferative nephritis with crescents in 25% of glomeruli. Serum ANCA was negative. Eighteen months later, systemic symptoms emerged and acute kidney injury occurred. Serum ANCA against myeloperoxidase (MPO) turned positive. Repeated kidney biopsy showed more severe lesion than last time. Immunoglobulin (Ig)G was purified from serum obtained before the first kidney biopsy. Weak ANCA which could not be detected in serum was found in IgG.Diagnoses:MPO-ANCA-associated AAV developed from ANCA-negative renal-limited AAV.Interventions:The patient was treated with glucocorticoid.Outcomes:The serum creatinine decreased to 2.17 mg/dL a week later. MPO-ANCA turned negative when re-examined 3 weeks later. No relapse has been observed during follow-up for 6 months.Lessons:This is the first reported case about the spontaneous transformation from ANCA-negative renal-limited AAV to ANCA-positive systemic vasculitis. There might be a slow process of epitope spreading in the pathogenesis of disease. Physicians should try their best to detect the ANCA in the diagnose and treatment of ANCA-negative AAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.