The ability to engineer genomes in a specific, systematic, and costeffective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.nanos-Cas9 | HRMA M uch of our knowledge of the mechanisms underlying biological processes relies on genetic approaches, whereby gene activity is perturbed and the phenotypic consequences of perturbation are analyzed in detail. In recent years, several major advances have been made in the design of methods for specifically and efficiently perturbing genomes. Arguably, the most exciting advances rely on the ability to induce double-strand breaks (DSBs) by targeting a nuclease to a specific genomic sequence. Repair of DSBs by the error-prone nonhomologous endjoining (NHEJ) mechanism allows for the recovery of small deletions; moreover, repair of DSBs by homologous recombination (HR) in the presence of a donor template opens the door to a wide range of specifically engineered changes at the targeted site (1).Two nuclease-based systems, the zinc-finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN) systems, work effectively in a number of organisms (2-7). But because these approaches require the production of a construct encoding a unique DNA-binding protein fused to the nuclease domain, they can be both cumbersome and costly. In contrast, the recent approach based on the bacterial CRISPR-associated single-guide RNA (Cas9/sgRNA) system does not require production of specific fusion proteins for each targeted sequence (8-10).Cas9 was first identified in type II Streptococcus pyogenes as an RNA-guided defense system against invading viruses and plasmids (11-13). This adaptive immune-like system contains three components: CRISPR RNA (crRNA), trans-activating CRISPR RNA (tracrRNA), and Cas9. The tracrRNA triggers Cas9 nuclease activity and the crRNA guides Cas9 to cleave the specific foreign dsDNA sequence via base-pairing between the crRNA and the target DNA. Importantly, a single-guide RNA (sgRNA, also known as chiRNA), comprising the minimal crRNA and tracrRNA, can function similarly to the crRNA and tracrRNA, thereby providing a simplified method for genome editing (8)(9)(10)(14)(15)(16)(17)(18)(19)(20).Given the great promise of the Cas9/sgRNA method for genome engineering, we set out to test the sys...
Conditional expression of hairpin constructs in Drosophila is a powerful method to disrupt the activity of single genes with a spatial and temporal resolution that is impossible, or exceedingly difficult, using classical genetic methods. We previously described a method (Ni et al. 2008) whereby RNAi constructs are targeted into the genome by the phiC31-mediated integration approach using Vermilion-AttB-Loxp-Intron-UAS-MCS (VALIUM), a vector that contains vermilion as a selectable marker, an attB sequence to allow for phiC31-targeted integration at genomic attP landing sites, two pentamers of UAS, the hsp70 core promoter, a multiple cloning site, and two introns. As the level of gene activity knockdown associated with transgenic RNAi depends on the level of expression of the hairpin constructs, we generated a number of derivatives of our initial vector, called the ''VALIUM'' series, to improve the efficiency of the method. Here, we report the results from the systematic analysis of these derivatives and characterize VALIUM10 as the most optimal vector of this series. A critical feature of VALIUM10 is the presence of gypsy insulator sequences that boost dramatically the level of knockdown. We document the efficacy of VALIUM as a vector to analyze the phenotype of genes expressed in the nervous system and have generated a library of 2282 constructs targeting 2043 genes that will be particularly useful for studies of the nervous system as they target, in particular, transcription factors, ion channels, and transporters.
Summary The CRISPR/Cas9 system has recently emerged as a powerful tool for functional genomic studies in Drosophila melanogaster. However, sgRNA parameters affecting the specificity and efficiency of the system in flies are still not clear. Here, we found that off-target effects did not occur in regions of genomic DNA with three or more nucleotide mismatches to sgRNAs. Importantly, we document for the first time a strong positive correlation between mutagenesis efficiency and sgRNA GC content of the six protospacer adjacent motif-proximal nucleotides (PAMPNs). Furthermore, by injecting well-designed sgRNA plasmids at the optimal concentration we determined, we could efficiently generate mutations in four genes in one step. Finally, we generated null alleles of HP1a using optimized parameters through homology-directed repair, and achieved an overall mutagenesis rate significantly higher than previously reported. Our work presents the most comprehensive optimization of sgRNA and promises to vastly simplify CRISPR/Cas9 experiments in Drosophila.
SUMMARYPhagocytic clearance of degenerating dendrites or axons is critical for maintaining tissue homeostasis and preventing neuroinflammation. Externalized phosphatidylserine (PS) has been postulated to be an ‘‘eat-me’’ signal allowing recognition of degenerating neurites by phagocytes. Here we show that in Drosophila, PS is dynamically exposed on degenerating dendrites during developmental pruning and after physical injury, but PS exposure is suppressed when dendrite degeneration is genetically blocked. Ectopic PS exposure via phospholipid flippase knockout and scramblase overexpression induced PS exposure preferentially at distal dendrites and caused distinct modes of neurite loss that differ in larval sensory dendrites and in adult olfactory axons. Surprisingly, extracellular lactadherin that lacks the integrin-interaction domain induced phagocyte-dependent degeneration of PS-exposing dendrites, revealing an unidentified bridging function that potentiates phagocytes. Our findings establish a direct causal relationship between PS exposure and neurite degeneration in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.