Graphene has emerged as interesting nanomaterials with promising applications in a range of fields including biomedicine. In this work, for the first time we study the long-term in vivo biodistribution of (125)I-labeled nanographene sheets (NGS) functionalized with polyethylene glycol (PEG) and systematically examine the potential toxicity of graphene over time. Our results show that PEGylated NGS mainly accumulate in the reticuloendothelial system (RES) including liver and spleen after intravenous administration and can be gradually cleared, likely by both renal and fecal excretion. PEGylated NGS do not cause appreciable toxicity at our tested dose (20 mg/kg) to the treated mice in a period of 3 months as evidenced by blood biochemistry, hematological analysis, and histological examinations. Our work greatly encourages further studies of graphene for biomedical applications.
Oxidization of carbon nanotubes by a mixed acid has been utilized as a standard method to functionalize carbon nanomaterials for years. Here, the products obtained from carbon nanotubes and graphite after a mixed-acid treatment are carefully studied. Nearly identical carbon dot (Cdot) products with diameters of 3-4 nm are produced using this approach from a variety of carbon starting materials, including single-walled carbon nanotubes, multiwalled carbon nanotubes, and graphite. These Cdots exhibit strong yellow fluorescence under UV irradiation and shifted emission peaks as the excitation wavelength is changed. In vivo fluorescence imaging with Cdots is then demonstrated in mouse experiments, by using varied excitation wavelengths including some in the near-infrared (NIR) region. Furthermore, in vivo biodistribution and toxicology of those Cdots in mice over different periods of time are studied; no noticeable signs of toxicity for Cdots to the treated animals are discovered. This work provides a facile method to synthesize Cdots as safe non-heavy-metal-containing fluorescent nanoprobes, promising for applications in biomedical imaging.
While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.