A fractal-featured metallic thin film with Sierpinski Carpet pattern is fabricated on silicon wafer by microfabrication techniques. Transmission infrared spectroscopy indicates that there exists extraordinary high transmission at specific wavelengths, which can be ascribed to the effect of surface plasmon resonance, and are determined by hierarchy of apertures of different sizes in the fractal structure. This patterned film provides a unique system to achieve enhanced transmission simultaneously at different selected frequencies of electromagnetic wave.
We report here a self-organized electroless deposition of copper in an ultrathin layer CuSO4 of electrolyte. Microscopically the branching rate of the copper deposits is significantly decreased, forming an array of smooth polycrystalline filaments. Compared with a conventional electrodeposition system, no macroscopic electric field is involved and the thickness of the electrolyte layer is greatly decreased. Therefore the electroless deposition takes place in a nearly ideal, two-dimensional diffusion-limited environment. We suggest that restriction of the thickness of the electrolyte film is responsible for the generation of smoother branches of the electrodeposits. Our data also show that even in a diffusion-limited scenario the aggregate morphology is not necessarily very ramified and fractal-like.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.