We used a novel NF-08-TM transplant protocol based on intravenous busulfan, cyclophosphamide, fludarabine, and thiotepa in 82 consecutive patients with -thalassemia major (TM), including 52 with allogeneic peripheral blood stem cell transplantation (PBSCT) from unrelated donors (UDs) with well-matched human leukocyte antigens and 30 with hematopoietic stem cell transplantation (HSCT) from matched sibling donors (MSDs). The median age at transplantation was 6.0 years (range, 0.6-15.0 years), and the ratio of male-to-female patients was 56:26. The median follow-up time was 24 months (range, 12-39 months). The estimated 3-year overall survival and TMfree survival were 92.3% and 90.4% in the UD-PBSCT group and 90.0% and 83.3% in the MSD-HSCT group. The cumulative incidences of graft rejection and grades III-IV acute graft-versus-host disease were 1.9% and 9.6%, respectively, in the UD-PBSCT group and 6.9% and 3.6%, respectively, in the MSD-HSCT group. The cumulative incidence of transplant-related mortality was 7.7% in the UD-PBSCT group and 10.0% in the MSD-HSCT group. In conclusion, UD-PBSCTs using the welltolerated NF-08-TM protocol show similar results to MSD-HSCTs and can be used to treat -thalassemia patients in the absence of MSDs. (Blood. 2012;120(19): 3875-3881)
Application of porous polymeric materials is severely limited by their ultralow thermal conductivities. Herein, by promoting the formation of thermal conduction pathways, we fabricated open-cellular structured polyethylene/hexagonal boron nitride hybrid thermal conductors via melt compounding plus salt leaching. The structural analyses indicate that the inclusion of hBN can enhance the open-cell level of resultant materials. X-ray diffractions confirm the high in-plane alignments of hBN in each sample. Consequently, the test results evidence the superior thermal conductivities of our samples, and the thermal conductivities of each sample are characterized as functions of hBN loadings. Ultimately, our advanced porous thermal conductor with a low hBN loading of 3.1 vol% exhibits a high specific thermal conductivity of 0.75 (W/mk)/(g/cm3), which is 82.9% higher than virgin PE and far higher than bulk PE/hBN composites. Our work also intends to reveal the architectural advantages of open-cellular, as compared with the close-one, in fabricating porous materials with highly interconnected fillers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.