BACKGROUNDDiarrhea is a major infectious cause of childhood morbidity and mortality worldwide. In clinical trials, Lactobacillus rhamnosus GG ATCC 53013 (LGG) has been used to treat diarrhea. However, recent randomized controlled trials (RCTs) found no evidence of a beneficial effect of LGG treatment.AIMTo evaluate the efficacy of LGG in treating acute diarrhea in children.METHODSThe EMBASE, MEDLINE, PubMed, Web of Science databases, and the Cochrane Central Register of Controlled Trials were searched up to April 2019 for meta-analyses and RCTs. The Cochrane Review Manager was used to analyze the relevant data.RESULTSNineteen RCTs met the inclusion criteria and showed that compared with the control group, LGG administration notably reduced the diarrhea duration [mean difference (MD) -24.02 h, 95% confidence interval (CI) (-36.58, -11.45)]. More effective results were detected at a high dose ≥ 1010 CFU per day [MD -22.56 h, 95%CI (-36.41, -8.72)] vs a lower dose. A similar reduction was found in Asian and European patients [MD -24.42 h, 95%CI (-47.01, -1.82); MD -32.02 h, 95%CI (-49.26, -14.79), respectively]. A reduced duration of diarrhea was confirmed in LGG participants with diarrhea for less than 3 d at enrollment [MD -15.83 h, 95%CI (-20.68, -10.98)]. High-dose LGG effectively reduced the duration of rotavirus-induced diarrhea [MD -31.05 h, 95%CI (-50.31, -11.80)] and the stool number per day [MD -1.08, 95%CI (-1.87, -0.28)].CONCLUSIONHigh-dose LGG therapy reduces the duration of diarrhea and the stool number per day. Intervention at the early stage is recommended. Future trials are expected to verify the effectiveness of LGG treatment.
Background: Colistin is being administered as last-line therapy for patients that have failed to respond to other available antibiotics that are active against Escherichia coli. The underlying mechanisms of colistin resistance and heteroresistance remain largely uncharacterized. The present study investigated the mechanisms of resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China. Materials and Methods: Colistin resistance was detected by the broth microdilution method (BMD). Colistin heteroresistance was determined by population analysis profiles (PAPs). The polymerase chain reaction (PCR) was conducted to detect mcr-1, mcr-2, mcr-3, pmrA, pmrB, phoP, phoQ and mgrB, and quantitative real-time PCR (qRT-PCR) was used to determine the expression levels of mcr-1, pmrC, pmrA and pmrB. Lipid A characterization was conducted by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Results: 0.69% (2/291) of Escherichia coli strains were resistant to colistin, whereas the heteroresistance rate reached 1.37% (4/291). mcr-1, the mobile colistin-resistance gene, was present in the two resistant isolates. The substitutions in PmrB were detected in the two heteroresistant isolates. The transcripts levels of the pmrCAB operon were upregulated in two of the heteroresistant isolates. carbonylcyanide m-chlorophenylhydrazone (CCCP) was able to reverse colistin resistance of all isolates tested and exhibited a significantly higher effect on colistin-heteroresistant isolates. MALDI-TOF MS indicated that the additional phosphoethanolamine (PEtn) moieties in lipid A profiles were present both in colistin-resistant and heteroresistant isolates. Conclusion: The present study was the first to investigate the differential mechanisms between colistin resistance and heteroresistance. The development of colistin heteroresistance should be addressed in future clinical surveillance.
Based on the sheath-core bicomponent composite fibers with modified polystyrene (PS) and the modified polypropylene (PP), composite fibers obtained were further cross-linked and sulphonated with chlorosulphonic acid to produce strong acidic cation ion exchange fibers. The structures of the fibers obtained were characterized using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) etc. The optimal technology of the fibers obtained is discussed. The static absorption capacity of the sheath-core bicomponent composite cation exchange fibers for Zn 2 + , Cu 2 + was determined. The absorption kinetics and major factors affecting the absorption capacities of Zn 2 + , Cu 2 +were studied, and its chemical stability and regenerating properties were probed. The results suggest that cation exchange fibers with better mechanical properties and higher exchange capability were obtained. Moreover, this type of ion exchange fiber has good absorption properties and working stability to various metal ions. Hence, they have higher practicability.
Solvent extracts of Rhus verniciflua Stokes wood were made using decompressing inner ebullition, and a Box-Behnken design was used to optimize extraction conditions to produce an extract that inhibited tyrosinase activity. The chemical compositions and inhibition rates were determined in extracts made with petroleum ether, ethyl acetate, n-butanol, and an aqueous fractionation. The ethyl acetate fraction had the highest total phenolic content and inhibition rates. The main flavonoids in this fraction were 0.531% fisetin, 7.582% fustin, 0.848% sulfuretin, and 0.272% butein. The effects of the extract on the monophenolase and diphenolase activity of mushroom tyrosinase were studied using the Lineweaver-Burk equation to determine the effect of the extract on inhibition of tyrosinase activity. The results showed that the extract inhibited both the monophenolase and diphenolase activity of the enzyme. The IC50 of the ethyl acetate extract was 308 μg/mL, with the lag period of the enzyme being obviously lengthened; it was estimated to be 2.45 min in the absence of the inhibitor and extended to 9.63 min in the presence of 500 μg/mL of extract. The ethyl acetate extract acted as a mixed type inhibitor. The KI was less than the KIS, which demonstrates that the [ESI] is less stable than [EI], suggesting that the extract could easily combine with free enzyme in the enzyme catalysis system, thus affecting enzyme catalysis on the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.