Polynitrogen compounds especially pentazolate anion complexes recently have attracted substantial attention due to their promising potential as high-energy-density materials. Here, using a machine-learning-accelerated crystal structure search method and first-principles calculations, we predict a new hybrid compound by inserting a large fraction of nitrogen into alkaline-earth metals. It is a new stoichiometric type MN10 (M = Be, Mg), which possesses a metal-centering octahedral pentazolate framework with the space group Fdd2. This type of ionic-like molecular crystal is found to be energetically more favorable than the mixtures of M3N2 or MN4 compounds and pure nitrogen and is possibly synthesized at relatively low pressures (around 12 GPa for MgN10). The ab initio molecular dynamics simulations show that they are metastable and can be quenched to ambient conditions once synthesized at high pressure. Moreover, decomposition of this polymeric MN10 structure can release a large amount of energy and shows high performance in detonation. The detonation velocity and pressure of BeN10 are about twice and 4 times that of trinitrotoluene, respectively.
Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated crystal structure searching method, we designed a superhard tungsten nitride, h-WN 6 , which can be synthesized at pressure around 65 GPa and quenchable to ambient pressure. This h-WN 6 is constructed with single-bonded N 6 rings and presents ionic-like features, which can be formulated as W 2.4+ N 6 2.4-. It has a band gap of 1.6 eV at 0 GPa and exhibits an abnormal gap broadening behavior under pressure. Excitingly, this h-WN 6 is found to be the hardest among transition metal nitrides known so far (Vickers hardness around 57 GPa) and also has a very high melting temperature (around 1900 K). These predictions support the designing rules and may stimulate future experiments to synthesize superhard material.
High-energy-density materials (HEDMs) have been intensively studied for their significance in fundamental sciences and practical applications. Here, using the molecular crystal structure search method based on first-principles calculations, we have predicted a series of metastable energetic trivalent metal pentazolate salts MN15 (M= Al, Ga, Sc, and Y). These compounds have high energy densities, with the highest nitrogen content among the studied nitrides so far. Pentazolate N5 – molecules stack up face-to-face and form wave-like patterns in the C2221 and Cc symmetries. The strong covalent bonding and very weak noncovalent interactions with nonbonded overlaps coexist in these ionic-like structures. We find MN15 molecular structures are mechanically stable up to high temperature (∼1000 K) and ambient pressure. More importantly, these trivalent metal pentazolate salts have high detonation pressure (∼80 GPa) and velocity (∼12 km/s). Their detonation pressures exceeding that of TNT and HMX make them good candidates for high-brisance green energetic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.