Our aims were to investigate the hypoglycemic effects and mechanisms of action of Ganoderma lucidum polysaccharides (GLPs) administered for 7 days in type 2 diabetic mice. The mice were randomly divided into four groups (8 mice/group): normal control group, diabetic control group, low-dose GLP-treated diabetic group (50 mg/kg/d), and high-dose GLP-treated diabetic group (100 mg/kg/d). Diabetes was induced by streptozotocin injection and high-fat dietary feeding. At the end of the study, fasting serum glucose, insulin, body weight (BW) and epididymal white adipose tissue weight were measured. The hepatic mRNA levels of glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes were determined by real-time polymerase chain reaction. Both doses of GLPs significantly decreased fasting serum glucose, insulin and epididymal fat/BW ratio compared with the diabetic control group (p < 0.05). The hepatic mRNA levels of GP, FBPase, PEPCK and G6Pase were significantly lower in both GLP-treated groups compared with the diabetic control group. Taken together, GLPs significantly decrease fasting serum glucose levels in type 2 diabetic mice in a dose-dependent manner. The decreases in fasting serum glucose levels may be associated with decreased mRNA expression levels of several key enzymes involved in gluconeogenesis and/or glycogenolysis.
This study aimed to assess the association between osteoporosis and long-term environmental Cd exposure through diet in southern China. A total of 1116 subjects from a Cd-polluted area and a non-Cd-polluted area were investigated. All subjects met the criteria of having been living in the investigated area for more than 15 years and lived on a subsistence diet of rice and vegetables grown in that area. Besides bone mineral density, the levels of urinary markers of early renal impairment, such as urinary N-acetyl-β-D-glucosaminidase (NAG), α -microglobulin, β -microglobulin, and urinary albumin, were also determined. Urinary Cd concentrations of all studied subjects ranged from 0.21 to 87.31 µg/g creatinine, with a median of 3.97 µg/g creatinine. Multivariate linear regression models indicated a significant negative association of urinary Cd concentrations with bone mineral density. In logistic regression models, both categorical and continuous urinary Cd concentrations were positively associated with osteoporosis. Subjects in the second, third, and fourth quartiles of urinary Cd concentration had greater odds of osteoporosis compared with subjects in the first quartile (odds ratio [OR] = 3.07, 95% confidence interval [CI], 1.77 to 5.33; OR = 4.63, 95% CI, 2.68 to 7.98; OR = 9.15, 95% CI, 5.26 to 15.94, respectively). Additional adjustment for levels of urinary markers did not attenuate the associations. No evidence existed of an interaction between urinary Cd concentration and renal function using levels of urinary markers, and estimated glomerular filtration rate (eGFR). In all subjects, the benchmark dose and benchmark dose lower bound were 1.14 (0.61) and 2.73 (1.83) µg/g creatinine, with benchmark response set at 5% and 10%, respectively. The benchmark dose of urinary Cd was lower in women than in men. This study demonstrated an inverse association between the body burden of Cd and osteoporosis. The toxic effect of Cd on bone may occur in parallel to nephrotoxicity. © 2017 American Society for Bone and Mineral Research.
Objectives: The aim of this study was to systematically evaluate the relationship between urinary excretion of cadmium (U-Cd) and biomarkers of renal dysfunction. Methods: One hundred eighty five non-smoking female farmers (aged from 44 to 71 years) were recruited from two rural areas with different cadmium levels of exposure in southern China. Morning spot urine samples were collected for detecting U-Cd, urinary creatinine (U-cre), β2-microglobulin (β2-MG), α1-microglobulin (α1-MG), metallothionein (MT), retinol binding protein (RBP), albumin (AB), N-acetyl-β-D-glucosaminidase (NAG), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (GGT) and kidney injury molecule-1 (KIM-1). Spearman’s rank correlation was carried out to assess pairwise bivariate associations between continuous variables. Three different models of multiple linear regression (the cre-corrected, un-corrected and cre-adjusted model) were used to model the dose-response relationships between U-Cd and nine urine markers. Results: Spearman’s rank correlation showed that NAG, ALP, RBP, β2-MG and MT were significantly associated with U-Cd for both cre-corrected and observed data. Generally, NAG correlated best with U-Cd among the nine biomarkers studied, followed by ALP and MT. In the un-corrected model and cre-adjusted model, the regression coefficients and R2 of nine biomarkers were larger than the corresponding values in the cre-corrected model, indicating that the use of observed data was better for investigating the relationship between biomarkers and U-Cd than cre-corrected data. Conclusions: Our results suggest that NAG, MT and ALP in urine were better biomarkers for long-term environmental cadmium exposure assessment among the nine biomarkers studied. Further, data without normalization with creatinine show better relationships between cadmium exposure and renal dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.