Although great efforts have been devoted to enhancing the efficiency and stability of perovskite solar cells (PSCs), the performance of PSCs has been far lower than anticipated. Interface engineering is helpful for obtaining high efficiency and stability through control of the interfacial charge transfer in PSCs. This paper demonstrates that the efficiency and stability of PSCs can be enhanced by introducing stable α-CsPbI 3 quantum dots (QDs) as an interface layer between the perovskite film and the hole transport material (HTM) layer. By synergistically controlling the valence band position (VBP) of the perovskite and the interface layer, an interface engineering strategy was successfully used to increase the efficiency of hole transfer from the perovskite to the HTM layer, resulting in the power conversion efficiency increasing from 15.17 to 18.56%. In addition, the enhancement of the stability of PSCs can be attributed to coating inorganic CsPbI 3 QDs onto the perovskite layer, which have a high moisture stability and result in long-term stability of the PSCs in ambient air.
Electrochromic devices can modulate their light absorption under a small driving voltage, but the requirement for external electrical supplies causes response-lag. To address this problem, self-powered electrochromic devices have been studied recently. However, insensitivity to the surrounding light and unsatisfactory stability of electrochromic devices have hindered their critical applications. Herein, novel perovskite solar cell-powered all-in-one gel electrochromic devices have been assembled and studied in order to achieve automatic light adjustment. Two alkynyl-containing viologen derivatives are synthesized as electrochromic materials, the devices with very high stability (up to 70000 cycles) serves as the energy storage and smart window, while the perovskite solar cell with power-conversion-efficiency up to 18.3% serves as the light detector and power harvester. The combined devices can automatically switch between bleached and colored state to adjust light absorption with variable surrounding light intensity in real-time swiftly, which establish significant potentials for applications as modern all-day intelligent windows.
Quasi-2D metal-halide perovskites with Ruddlesden− Popper structures have shown promising stability due to the protective effects of the intercalating organic cations. However, a systematic study of the effect of intercalating organic cations on stability has rarely been reported. Here we use a high-throughput-robot platform to fabricate over 300 perovskite films and study the effect of cations and their concentrations on the thermal stability of perovskite films. We find that approximately 20−25 mol % of intercalating organic cations into MAPbI 3 (nominal n = 4/5) can maximize the film stability, while higher/lower concentrations lead to inferior stability, which is termed stability bowing in analogy to band-gap bowing. A model with two competitive effects of the intercalating organic cation (better protection vs more defects) is proposed to rationalize this behavior. We anticipate this work to provide new insights into the stability of quasi-2D perovskites.
The passivation of electronic defects
at the surfaces and grain
boundaries of perovskite materials is one of the most important strategies
for suppressing charge recombination in perovskite solar cells (PSCs).
Although several passivation molecules have been investigated, few
studies have focused on their application in regulating both the surface
passivation and residual strain of perovskite films. In this study,
the residual strain distribution profiles of the Cs0.1FA0.9SnI3 perovskite thin films and their effect on
the photovoltaic device efficiencies were investigated. We found a
gradient distribution of the out-of-plane compressive strain that
correlated with the compositional inhomogeneity perpendicular to the
substrate surface. By deliberately engineering dual effects of the
surface passivation and residual strain, we achieved a record power
conversion efficiency of up to 9.06%, the highest ever reported in
a typical n–i–p architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.