Ambient sunlight-driven CO
2
methanation cannot be realized due to the temperature being less than 80 °C upon irradiation with dispersed solar energy. In this work, a selective light absorber was used to construct a photothermal system to generate a high temperature (up to 288 °C) under weak solar irradiation (1 kW m
−2
), and this temperature is three times higher than that in traditional photothermal catalysis systems. Moreover, ultrathin amorphous Y
2
O
3
nanosheets with confined single nickel atoms (SA Ni/Y
2
O
3
) were synthesized, and they exhibited superior CO
2
methanation activity. As a result, 80% CO
2
conversion efficiency and a CH
4
production rate of 7.5 L m
−2
h
−1
were achieved through SA Ni/Y
2
O
3
under solar irradiation (from 0.52 to 0.7 kW m
−2
) when assisted by a selective light absorber, demonstrating that this system can serve as a platform for directly harnessing dispersed solar energy to convert CO
2
to valuable chemicals.
It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago.
Molecular mechanisms and gene regulation are of interest in the area of geomicrobiology in which the interaction between microbes and minerals is studied. This paper focuses on the regulation of the expression of carbonic anhydrase (CA) genes in Bacillus mucilaginosus and the effects of the expression product of the B. mucilaginosus CA gene in Escherichia coli on calcite weathering. Real-time fluorescent quantitative PCR (RT-qPCR) was used to explore the relationship between CA gene expression in B. mucilaginosus and promotion of calcite dissolution under condition of Ca 2C deficiency. The results showed that adding calcite to the medium, which lacks Ca 2C , can up-regulate the expression of the bacterial CA genes to accelerate calcite dissolution for bacterial growth. CA genes from B. mucilaginosus were transferred into E. coli by cloning. We then employed crude enzyme extract from the resultant E. coli strain in calcite dissolution experiments. The enzyme extract promoted calcite dissolution. These findings provide direct evidence for the role of microbial CA on mineral weathering and mineral nutrition release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.