Gastrointestinal nematodes (GINs) are a group of parasites that threaten livestock yields, and the consequent economic losses have led to major concern in the agricultural industry worldwide. The high frequency of anthelmintic resistance amongst GINs has prompted the search for sustainable alternatives. Recently, a substantial number of both in vitro and in vivo experiments have shown that biological controls based on predatory fungi and ovicidal fungi are the most promising alternatives to chemical controls. In this respect, the morphological characteristics of the most representative species of these two large groups of fungi, their nematicidal activity and mechanisms of action against GINs, have been increasingly studied. Given the limitation of the independent use of a single nematophagous fungus (NF), combined applications which combine multiple fungi, or fungi and chemical controls, have become increasingly popular, although these new strategies still have antagonistic effects on the candidates. In this review, we summarize both the advantages and disadvantages of the individual fungi and the combined applications identified to date to minimize recurring infections or to disrupt the life cycle of GINs. The need to discover novel and high-efficiency nematicidal isolates and the application of our understanding to the appropriate selection of associated applications are discussed.
Aspergillus fumigatus is a ubiquitous mold and a common human fungal pathogen. Recent molecular population genetic and epidemiological analyses have revealed evidence for long-distance gene flow and high genetic diversity within most local populations of A. fumigatus . However, little is known about the impact of regional landscape factors in shaping the population diversity patterns of this species. Here we sampled extensively and investigated the population structure of A. fumigatus from soils in the Three Parallel Rivers (TPR) region in Eastern Himalaya. This region is remote, undeveloped and sparsely populated, bordered by glaciated peaks more than 6,000 m above sea level, and contained three rivers separated by tall mountains over very short horizontal distances. A total of 358 A . fumigatus strains from 19 sites along the three rivers were isolated and analyzed at nine loci containing short tandem repeats. Our analyses revealed that mountain barriers, elevation differences, and drainage systems all contributed low but statistically significant genetic variations to the total A. fumigatus population in this region. We found abundant novel alleles and genotypes in the TPR population of A. fumigatus and significant genetic differentiation between this population and those from other parts of Yunnan and the globe. Surprisingly, despite limited human presence in this region, about 7% of the A. fumigatus isolates were resistant to at least one of the two medical triazoles commonly used for treating aspergillosis. Our results call for greater surveillance of this and other human fungal pathogens in the environment. IMPORTANCE The extreme habitat fragmentation and substantial environmental heterogeneity in the TPR region have long known to contribute to geographically shaped genetic structure and local adaptation in several plant and animal species. However, there have been limited studies of fungi in this region. Aspergillus fumigatus is a ubiquitous pathogen capable of long-distance dispersal and growth in diverse environments. In this study, using A. fumigatus as a model, we investigated how localized landscape features contribute to genetic variations in fungal populations. Our results revealed that elevation and drainage isolation rather than direct physical distances significantly impacted genetic exchange and diversity among the local A. fumigatus populations. Interestingly, within each local population, we found high allelic and genotypic diversities, and with evidence ~7% of all isolates being resistant to two medical triazoles, itraconazole and voriconazole. Given the high frequency of ARAF found in mostly natural soils of sparsely populated sites in the TPR region, close monitoring of their dynamics in nature and their effects on human health is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.