Light flicker is a common but unwelcome phenomenon in conventional lighting applications. In solid-state lighting, driving or dimming methods also give rise to light flicker. AC LED products in today's marketplace suffer from flicker, which stems from the arrangement of the micro-LEDs and the driving method. Research has shown that light flicker can be a health hazard to humans. Several solutions have been proposed to reduce light flicker in solid-state lighting applications; however, most have drawbacks in terms of power and other performance. This paper proposes a circuit design to reduce light flicker from AC LEDs while maintaining a normal power factor and high power efficiency. The circuit is composed of one resistive branch and one capacitive branch, and each branch drives a load which is made up of high-voltage LEDs. Percent flicker, power factor, and power efficiency were selected as three metrics, and their benchmarks were set to evaluate the performance of this circuit. Phase shift between the two branches was selected as a factor that could determine the circuit performance. The variations of percent flicker, power factor, and power efficiency as a function of phase shift were identified by theoretical analysis and were verified by experiments. The experimental results show that an optimal solution can be achieved for this circuit design at proper phase shift, where the benchmarks of the three metrics are reached.
Flicker has been an important lighting system consideration for over a century. More precise terms are temporal light modulation (TLM) as the stimulus, and responses to TLM as the unwanted visual, cognitive, or physiological consequences. As lighting technology evolved, different forms of TLM emerged, and so did responses to them. Today, some LED systems – encompassing the LED, driver, and control – can result in TLM causing severe unwanted effects, while other LED systems produce no unwanted effects at all. LED systems can deliver a much wider range of luminous waveforms than conventional lighting systems, some exhibiting very high modulation depths. More than any light source before, they can elicit perceptions of the phantom array. Direct flicker effects at modulation frequencies less than about 80 Hz and the stroboscopic effect at frequencies greater than 80 Hz are fairly well understood, but the phantom array effect needs more exploration and characterisation. This review focuses on the technology and research history that led to current metrics for quantifying TLM and human responses to TLM. Visually impaired individuals may exhibit alterations in their response to TLM, but such a discussion is beyond the intent of this review. Thus, the focus is on individuals with normal visual function.
We investigate quantum strategy in moving frames by considering Prisoner's Dilemma and propose four thresholds of γ for two players to determine their Nash Equilibria. Specially, an interesting phenomenon appears in relativistic situation that the quantum feature of the game would be enhanced and diminished for different players whose particle's initial spin direction are respectively parallel and antiparallel to his/her movement direction, that is, for the former the quantum feature of the game is enhanced while for the latter the quantum feature would be diminished. Thus a classical latter could still maintain his/her strictly dominant strategy (classical strategy) even if the game itself is highly entangled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.