We use first-principles DFT and hybrid DFT calculations to investigate the formation of native defects and transition-metal (Mn, Fe, Co, and Ni) doping in zinc-blende CdS and their effect on the electronic structures. Our results reveal that Cd vacancies, S vacancies, interstitial Cd, and interstitial S are dominant native defects, in good agreement with experimental results. Except interstitial S, other native defects do not contribute to visible light absorption. Transitionmetal dopants tend to substitute a lattice Cd atom under S-rich conditions and occupy a tetrahedral interstitial site under p-type and Cd-rich conditions. The doping becomes difficult with increasing the atomic number of the transition metal. Co doping does not contribute to visible light absorption. Mn, Fe, and Ni doping, especially interstitial Ni doping, is able to narrow the band gap, and thus, these transition metals are good dopant candidates to tailor the visible light absorption property of nanosized CdS photocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.