This work considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation (SCA) technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.Index Terms-Covert communication, UAV networks, trajectory optimization, transmit power, location uncertainty.Recently, unmanned aerial vehicles (UAVs) have been extensively used in wireless communication networks, due to their controllable mobility, on-demand deployment, and lineof-sight (LoS) air-to-ground link (e.g., [1]). For example, a UAV can be used as an airborne wireless communication platform such as mobile base station (BS) to rapidly recover communication service or to enhance communication quality (e.g., [2]-[6]). It can also be utilized as a mobile relay to provide a wireless connection between two or more remote users without the need for a reliable direct communication link (e.g., [7]-[9]). Furthermore, a UAV can conduct mobile data X. Zhou is with the
Neural disruptions during emotion regulation are common of generalized anxiety disorder (GAD). Identifying distinct functional and effective connectivity patterns in GAD may provide biomarkers for their diagnoses. This study aims to investigate the differences of features of brain network connectivity between GAD patients and healthy controls (HC), and to assess whether those differences can serve as biomarkers to distinguish GAD from controls. Independent component analysis (ICA) with hierarchical partner matching (HPM-ICA) was conducted on resting-state functional magnetic resonance imaging data collected from 20 GAD patients with medicine-free and 20 matched HC, identifying nine highly reproducible and significantly different functional brain connectivity patterns across diagnostic groups. We then utilized Granger causality (GC) to study the effective connectivity between the regions that identified by HPM-ICA. The linear discriminant analysis was finally used to distinguish GAD from controls with these measures of neural connectivity. The GAD patients showed stronger functional connectivity in amygdala, insula, putamen, thalamus, and posterior cingulate cortex, but weaker in frontal and temporal cortex compared with controls. Besides, the effective connectivity in GAD was decreased from the cortex to amygdala and basal ganglia. Applying the ICA and GC features to the classifier led to a classification accuracy of 87.5%, with a sensitivity of 90.0% and a specificity of 85.0%. These findings suggest that the presence of emotion dysregulation circuits may contribute to the pathophysiology of GAD, and these aberrant brain features may serve as robust brain biomarkers for GAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.