When reporting the results of clinical studies, some researchers may choose the five‐number summary (including the sample median, the first and third quartiles, and the minimum and maximum values) rather than the sample mean and standard deviation (SD), particularly for skewed data. For these studies, when included in a meta‐analysis, it is often desired to convert the five‐number summary back to the sample mean and SD. For this purpose, several methods have been proposed in the recent literature and they are increasingly used nowadays. In this article, we propose to further advance the literature by developing a smoothly weighted estimator for the sample SD that fully utilizes the sample size information. For ease of implementation, we also derive an approximation formula for the optimal weight, as well as a shortcut formula for the sample SD. Numerical results show that our new estimator provides a more accurate estimate for normal data and also performs favorably for non‐normal data. Together with the optimal sample mean estimator in Luo et al., our new methods have dramatically improved the existing methods for data transformation, and they are capable to serve as “rules of thumb” in meta‐analysis for studies reported with the five‐number summary. Finally for practical use, an Excel spreadsheet and an online calculator are also provided for implementing our optimal estimators.
Middle East respiratory syndrome coronavirus (MERS-CoV) with pandemic potential is a major worldwide threat to public health. However, vaccine development for this pathogen lags behind as immunity associated with protection is currently largely unknown. In this study, an immunoinformatics-driven genome-wide screening strategy of vaccine targets was performed to thoroughly screen the vital and effective dominant immunogens against MERS-CoV. Conservancy and population coverage analysis of the epitopes were done by the Immune Epitope Database. The results showed that the nucleocapsid (N) protein of MERS-CoV might be a better protective immunogen with high conservancy and potential eliciting both neutralizing antibodies and T-cell responses compared with spike (S) protein. Further, the B-cell, helper T-cell and cytotoxic T lymphocyte (CTL) epitopes were screened and mapped to the N protein. A total of 15 linear and 10 conformal B-cell epitopes that may induce protective neutralizing antibodies were obtained. Additionally, a total of 71 peptides with 9-mer core sequence were identified as helper T-cell epitopes, and 34 peptides were identified as CTL epitopes. Based on the maximum HLA binding alleles, top 10 helper T-cell epitopes and CTL epitopes that may elicit protective cellular immune responses against MERS-CoV were selected as MERS vaccine candidates. Population coverage analysis showed that the putative helper T-cell epitopes and CTL epitopes could cover the vast majority of the population in 15 geographic regions considered where vaccine would be employed. The B- and T-cell stimulation potentials of the screened epitopes is to be further validated for their efficient use as vaccines against MERS-CoV. Collectively, this study provides novel vaccine target candidates and may prompt further development of vaccines against MERS-CoV and other emerging infectious diseases.
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in folding and stabilizing multiple intracellular proteins that have roles in cell activation and proliferation. Many Hsp90 client proteins in tumor cells are mutated or overexpressed oncogenic proteins driving cancer cell growth, leading to the acceptance of Hsp90 as a potential therapeutic target for cancer. Because several signal transduction molecules that are dependent on Hsp90 function are also involved in activation of innate and adaptive cells of the immune system, we investigated the mechanism by which inhibiting Hsp90 leads to therapeutic efficacy in rodent models of inflammation and autoimmunity. EC144, a synthetic Hsp90 inhibitor, blocked LPS-induced TLR4 signaling in RAW 264.7 cells by inhibiting activation of ERK1/2, MEK1/2, JNK, and p38 MAPK but not NF-κB. Ex vivo LPS-stimulated CD11b+ peritoneal exudate cells from EC144-treated mice were blocked from phosphorylating tumor progression locus 2, MEK1/2, and ERK1/2. Consequently, EC144-treated mice were resistant to LPS administration and had suppressed systemic TNF-α release. Inhibiting Hsp90 also blocked in vitro CD4+ T cell proliferation in mouse and human MLRs. In vivo, semitherapeutic administration of EC144 blocked disease development in rat collagen-induced arthritis by suppressing the inflammatory response. In a mouse collagen-induced arthritis model, EC144 also suppressed disease development, which correlated with a suppressed Ag-specific Ab response and a block in activation of Ag-specific CD4+ T cells. Our results describe mechanisms by which blocking Hsp90 function may be applicable to treatment of autoimmune diseases involving inflammation and activation of the adaptive immune response.
Orally active Hsp90 inhibitors are of interest as potential chemotherapeutic agents. Recently, fully synthetic 8-benzyladenines and 8-sulfanyladenines such as 4 were disclosed as Hsp90 inhibitors, but these compounds are not water soluble and consequently have unacceptably low oral bioavailabilities. We now report that water-solubility can be achieved by inserting an amino functionality in the N(9) side chain. This results in compounds that are potent, soluble in aqueous media, and orally bioavailable. In an HER-2 degradation assay, the highest potency was achieved with the neopentylamine 42 (HER-2 IC(50) = 90 nM). In a murine tumor xenograft model (using the gastric cancer cell line N87), the H(3)PO(4) salts of the amines 38, 39, and 42 induced tumor growth inhibition when administered orally at 200 mg/kg/day. The amines 38, 39, and 42 are the first Hsp90 inhibitors shown to inhibit tumor growth upon oral dosage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.