Aqueous zinc-ion batteries (AZIBs) have attracted attention for their low cost and environmental friendliness. Unfortunately, commercialization has been hampered by several problems with dendrite growth and side reactions. Herein, we select sodium tartrate (TA-Na) as a dual-functional electrolyte additive to enhance the reversibility of AZIBs. The tartrate anions are preferentially adsorbed on the Zn surface, and then the highly nucleophilic carboxylate will coordinate with Zn2+ to promote the desolvation of [Zn(H2O)6]2+, leading to uniform Zn deposition on the beneficial (002) plane and inhibiting side reactions and dendrite growth. Consequently, the Zn|Zn cells show a long-term cycling stability of over 1500 cycles at 0.5 mA cm–2. Moreover, the Ta-Na additive improves the performance of Zn||MnO2 full cells, evidenced by a cycling life of 1000 cycles at 1 A g–1 under practical conditions with a limited Zn anode (negative/positive capacity ratio of 10/1) and controlled electrolyte (electrolyte/capacity ratio of 20 μL mAh–1).
Rechargeable aqueous zinc-ion batteries are considered as ideal candidates for large-scale energy storage due to their high safety, eco-friendliness, and low cost. However, Zn anode invites dendrite growth and parasitic reactions at anode-electrolyte interface, impeding the practical realization of the battery. In this study, the electrochemical performance of the Zn-metal anode is proposed to improve by using a 3D ZnTe semiconductor substrate. The substrate features high zincophilicity, high electronic conductivity and electron affinity, and a low Zn nucleation energy barrier to promote dendrite-proof Zn deposition along the (002) crystal plane, while it also maintains high chemical stability against parasitic metal corrosion and hydrogen evolution reactions at surface, and a stable skeleton structure against the volume variation of anode. A Zn-metal anode based on the telluride substrate shows a long cycle life of over 3300 h with a small voltage hysteresis of 48 and 320 mV at 1 and 30 mA cm −2 , respectively. A zinc telluride@Zn//MnO 2 full cell can operate for over 500 cycles under practical conditions in terms of lean electrolyte (18 µL mAh −1 ) and limited Zn metal ( negative/positive capacity ratio of 3:1, and a high mass loading of the cathode.
Aqueous zinc ion batteries (AZIBs) with high safety, low cost, and eco‐friendliness advantages show great potential in large‐scale energy storage systems. However, their practical application is hindered by low Columbic efficiency and unstable zinc anode resulting from the side reactions and deterioration of zinc dendrites. Herein, tripropylene glycol (TG) is chosen as a dual‐functional organic electrolyte additive to improve the reversibility of AZIBs significantly. Importantly, ab initio molecular dynamics theoretical simulations and experiments such as in situ electrochemical impedance spectroscopy, and synchrotron radiation‐based in situ Fourier transform infrared spectroscopy confirm that TG participates in the solvation sheath of Zn2+, regulating overpotential and inhibiting side reactions; meanwhile, TG inhibits the deterioration of dendrites and modifies the direction of zinc deposition by constructing an adsorbed layer on the zinc anode. Consequently, a Zn‐MnO2 full cell with TG electrolyte exhibited a specific capacity of 124.48 mAh g‐1 after 1000 cycles at a current density of 4 A g‐1. This quantitative regulation for suitable solvation sheath and adsorbed layer on zinc anode, and its easy scalability of the process can be of immediate benefit for the dendrite‐free, high‐performance, and low‐cost energy storage systems.
Sustainable organic electrode materials, as promising alternatives to conventional inorganic electrode materials for sodium‐ion batteries (SIBs), are still challenging to realize long‐lifetime and high‐rate batteries because of their poor conductivity, limited electroactivity, and severe dissolution. It is also urgent to deeply reveal their electrochemical mechanism and evolution processes. A porous organic polymer (POP) with a conjugated and hierarchical structure is designed and synthesized here. The unique molecule and structure endow the POP with electron delocalization, high ionic diffusivity, plentiful active sites, exceptional structure stability, and limited solubility in electrolytes. When evaluated as an anode for SIBs, the POP exhibits appealing electrochemical properties regarding reversible capacity, rate behaviors, and long‐duration life. Importantly, using judiciously combined experiments and theoretical computation, including in situ transmission electron microscopy (TEM), and ex situ spectroscopy, we reveal the Na‐storage mechanism and dynamic evolution processes of the POP, including 12‐electron reaction process with Na, low volume expansion (125–106% vs the initial 100%), and stable composition and structure evolution during repeating sodiation/de‐sodiation processes. This quantitative design for ultrafast and highly durable sodium storage in the POP could be of immediate benefit for the rational design of organic electrode materials with ideal electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.