The ammonium-oxidizing microbial community was investigated in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor that was operated for about 1 year with high anaerobic ammonium oxidation activity (up to 0.8 kg NH(4)(+)-N m(-3) day(-1)). A Planctomycetales-specific 16S rRNA gene library was constructed to analyse the diversity of the anaerobic ammonium-oxidizing bacteria (AnAOB). Most of the specifically amplified sequences (15/16) were similar to each other (> 99%) but were distantly related to all of the previously recognized sequences (< 94%), with the exception of an unclassified anammox-related clone, KSU-1 (98%). An ammonia monooxygenase (amoA) gene library was also analysed to investigate the diversity of 'aerobic' ammonium-oxidizing bacteria (AAOB) from the beta-Proteobacteria. Most of the amoA gene fragments (53/55) clustered in the Nitrosomonas europaea-Nitrosococcus mobilis group which has been reported to prevail under oxygen-limiting conditions. The quantitative results from real-time polymerase chain reaction (PCR) amplification showed that the dominant AnAOB comprised approximately 50% of the total bacterial 16S rRNA genes in the reactor, whereas the AAOB of beta-Proteobacteria represented only about 3%. A large fragment (4008 bp) of the rRNA gene cluster of the dominant AnAOB (AS-1) in this reactor sludge was sequenced and compared with sequences of other Planctomycetales including four anammox-related candidate genera. The partial sequence of hydrazine-oxidizing enzyme (hzo) of dominant AnAOB was also identified using new designed primers. Based on this analysis, we propose to tentatively name this new AnAOB Candidatus'Jettenia asiatica'.
Glucose regulated protein 75 (GRP75) is an important molecular chaperon belonged to the heat shock protein (HSP) family. To evaluate the effect of GRP75 overexpression on PC12 cells under glucose deprivation, cell viability and mitochondrial function of GRP75-overexpressing PC12 cells and the vector transfected control PC12 cells were monitored during glucose deprivation. Upon exposure to glucose deprivation, GRP75-overexpressing PC12 cells exhibited more moderate cell damage than control PC12 cells. Both of the two groups of cells showed a decreased ATP level following an early increase in the condition of glucose deprivation, and the mitochondrial potential were also reduced in the similar manner in the two groups of cells. Control PC12 cells showed an immediate and rapid increase in ROS accumulation after the onset of GD treatment, and this accumulation was slowed and reduced in GRP75-overexpressing PC12 cells. These findings suggested that GRP75 could inhibit the ROS accumulation, and it may be associated with the cytoprotective effect of GRP75 overexpression upon glucose deprivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.