ObjectiveExcessive carbohydrate intake is a high risk factor for increased morbidity of type 2 diabetes (T2D). A novel regimen for the dietary care of diabetes that consists of a highly active α-amylase inhibitor derived from white common bean extract (WCBE) and sufficient carbohydrates intake was applied to attenuate T2D and its complications. Furthermore, the role of gut microbiota in this remission was also investigated.MethodsWe conducted a 4-month randomized double-blinded placebo-controlled trial. During the intense intervention period, ninety subjects were randomly assigned to the control group (Group C) and WCBE group (Group W). Subjects in Group C were supplemented with 1.5 g of maltodextrin as a placebo. Subjects in Group W took 1.5 g of WCBE half an hour before a meal. Fifty-five participants continued the maintenance intervention receiving the previous dietary intervention whereas less frequent follow-up. The variation in biochemical, vasculopathy and neuropathy indicators and the structure of the fecal microbiota during the intervention was analyzed.ResultGlucose metabolism and diabetic complications showed superior remission in Group W with a 0.721 ± 0.742% decline of glycosylated hemoglobin after 4 months. The proportion of patients with diabetic peripheral neuropathy (Toronto Clinical Scoring System, TCSS ≥ 6) was significantly lower in Group W than in Group C. Both the left and right sural sensory nerve conduction velocity (SNCV-left sural and SNCV-right sural) slightly decreased in Group C and slightly increased in Group W. Additionally, the abundances of Bifidobacterium, Faecalibacterium and Anaerostipes were higher in Group W, and the abundances of Weissella, Klebsiella, Cronobacter and Enterobacteriaceae_unclassified were lower than those in Group C at month 2. At the end of month 4, Bifidobacterium remained more abundant in Group W.ConclusionTo our knowledge, this is the first report of improvement to diabetes complications by using a dietary supplement in such a short-term period. The enrichment of SCFA-producing bacteria might be responsible for the attenuation of T2D and its complications.Clinical trial registration numberhttp://www.chictr.org.cn/edit.aspx?pid=23309&htm=4, identifier ChiCTR-IOR-17013656
The aim of the present study was to determine the role of long non-coding RNA (lncRNA) forkhead box D2 antisense 1 (FOXD2-AS1) in the development of ovarian cancer, investigate the underlying mechanisms and provide a potential diagnostic biomarker for ovarian cancer. A total of 39 ovarian cancer patients were included, and the ovarian cancer tissues and paracancer tissues were obtained. The ovarian cancer cell lines SKOV3 and OVCAR3 and the human ovarian normal epithelial cell line IOSE80 were cultured. The expression of lncRNA FOXD2-AS1 and miR-4492 was detected by reverse transcription-quantitative PCR. Small interfering RNA targeting FOXD2-AS1 (si-FOXD2-AS1), microRNA (miR)-4492 mimics, miR-4492 inhibitor and their corresponding controls were transfected into cells. The proliferation was detected with a Cell-Couting-Kit-8 assay, and migration and invasion were determined using Transwell assays. The mutual binding site of lncRNA FOXD2-AS1 and miR-4492 was predicted with the miRDB database and verified by a luciferase reporter assay. Finally, a rescue assay was performed. The results suggested that lncRNA FOXD2-AS1 was upregulated in ovarian cancer tissues and cell lines. si-FOXD2-AS1 was able to inhibit the proliferation, migration and invasion of ovarian cancer cells. lncRNA FOXD2-AS1 was confirmed to directly target miR-4492. The expression of lncRNA FOXD2-AS1 and miR-4492 exhibited a negative correlation. In a rescue experiment, miR-4492 inhibitor abrogated the effect of siFOXD2-AS1 in SKOV3 and OVCAR3 cell lines. In conclusion, lncRNA FOXD2-AS1 promotes the proliferation and invasion of ovarian cancer cells via regulating the expression of miR-4492. It may be a novel potential diagnostic biomarker and therapeutic target for ovarian cancer.
Osteosarcoma (OS) is the most common type of malignant bone tumor in adults and children. Despite the great strides in biology and medicine, the survival rate of patients with metastatic disease remains very poor. This rate has been staggering with recurrence and metastasis. In the present study, we proposed Wnt/β-catenin pathway as a key biological target for the effective treatment in OS. Wnt signaling has been reported to play important roles in osteoblastogenesis. We hypothesized that docetaxel (DTX) will effectively arrest the osteosarcoma progression by suppressing the Wnt/β-catenin pathway in OS cells. Our results show that DTX significantly inhibited the cell proliferation of U2OS and SaOS-2 cancer cells in a time-dependent and dose-dependent manner. DTX inhibited the intrinsic transcriptional activity of β-catenin/Tcf in U2OS cancer cells and SaOS-2 cancer cells. GSK-3βinhibitor (SB216763) treatment remarkably increased the β-catenin/Tcf transcriptional activities. The transcriptional activities have been increased by around ~200% due to the decrease in the degradation of β-catenin mediated through GSK-3β. Summarizing, present study clearly showed that DTX inhibited Wnt/β-catenin signalling pathways and significantly reduced the matrix metallopeptodase 9 (MMP-9) protein expressions and its activity. Taken together, our findings provide novel insight on the effect of anticancer small molecules to improve the outcomes in osteosarcoma.
Given the spatial structures and functional requirements, there are a number of different types of obstacles in long and narrow confined spaces that will cause a premixed gas explosion to produce greater overpressure and influence the flame behavior for different obstacles. Because the volume fraction of unburned gas changes with the changing height of the U-type obstacles, we can further study the influence on the volume fraction of the unburned premixed gas for the characteristics of the overpressure and the flame behaviors in the closed tube with the obstacles. The results show that after the premixed gas is successfully ignited in the pipe, the overpressure in the pipe greatly increases as the unburned premixed gas burns between the adjacent plates. Moreover, the increase of the overpressure in the closed duct becomes faster when the decrease of unburned gas becomes faster. The high-pressure areas between the plates move inversely compared with the direction of flame propagation when the height of the U-type increases, whereas the high pressure in the front of the flame moves further when the flame propagation passes all obstacles. In addition, the reversed flow structure of the flame is a coupling result for the overpressure caused by the flame propagation and the vortex between the plates. From the perspective of production safety, this study is a significant basic subject about the characteristics of overpressure and flame behaviors in a closed tube with obstacles.
Patients and methods: MG63 osteosarcoma cell was treated by different concentration of sclarcol. CCK8 assay was used to test its effect on cell proliferation. LC 50 value was then determined to obtain optimal treatment dosage. MG63 cells were then divided into control and drug treated group, and were tested for apoptosis using flow cytometry. Rhodamine 123 was used to label mitochondrial membrane potential, which was measured by laser confocal microscope.Results: CCK8 test results showed that sclareol can inhibit MG63 cell proliferation, with an LC 50 value at 11.0 μM. Flow cytometry results showed the apoptotic cell ratio at 13.8%, 24.1% and 37.3% after applying 2.0 μM, 4.0 μM and 8.0 μM sclareol. Compared to control group, sclareol significantly depressed mitochondrial membrane potential of MG63 cells. Conclusion: Sclareol can inhibit the proliferation of MG63 cells, and induce cell apoptosisand decrease mitochondrial membrane potential. These results suggested the inhibition of osteosarcoma cells by sclareol via both apoptosis induction and decreasing mitochondrial membrane potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.