Solid tumors consist of various types of stromal cells in addition to cancer cells. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and play an essential role in tumor progression and metastasis in a variety of malignancies, including gastric cancer. However, the effects of CAFs on gastric cancer cells' progression and metastasis are not well studied. Here we show that matrix metalloproteinase 11 (MMP11) in exosomes secreted from CAFs can be delivered into gastric cancer cells. Gastric CAFs promote gastric cancer cell migration partially through exosomal MMP11. Moreover, MMP11 is overexpressed in exosomes purified from plasma of gastric cancer patients and tumor tissues and associated with overall survival of gastric patients. We also find that MMP11 is negatively regulated by exosomal miR-139 in the CAFs of gastric cancer. Exosomal miR-139 inhibits tumor growth and metastasis of gastric cancer cells by decreasing the expression of MMP11 in vitro and in vivo. Thus, we propose that exosomal miR-139 derived from gastric CAFs could inhibit the progression and metastasis of gastric cancer by decreasing MMP11 in tumor microenvironment.
Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer-related death among women worldwide. Evidence indicates that posttranscriptional N6-methyladenosine (m6A) modification modulates BC development. In the present study, we assessed BC and normal tissues to investigate this connection. RNA m6A levels were determined by methylation quantification assay. The effects of methyltransferase-like 14 (METTL14) gain-of-expression or co-transfection with an m6A inhibitor on cell migration and invasion abilities were determined by Transwell assays. The levels of differentially expressed (DE) miRNAs were verified by real-time quantitative PCR (RT-qPCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) were performed to analyze potential function of target genes of the DE miRNAs. The effects of candidate miRNAs modulated by METTL14 on cell migration and invasion abilities were confirmed by Transwell assays. We demonstrated that m6A methyltransferase METTL14 was significantly upregulated in BC tissues compared with normal tissues. METTL14 gain-and loss-of-expression regulated m6A levels in MCF-7 and MDA-MB-231 cells. The cell function assays revealed that METTL14 overexpression enhanced the migration and invasion capacities of BC cells. Moreover, treatment with the m6A inhibitor suppressed this enhanced cell migration and invasion. Additionally, aberrant expression of METTL14 reshaped the miRNA profile in BC cell lines. The remodeled DE miRNA/mRNA network was found to be most enriched in cancer pathways, and DE miRNAs were enriched in cell adhesion terms. hsa-miR-146a-5p modulated by METTL14 promoted cell migration and invasion. METTL14 modulates m6A modification and hsa-miR-146a-5p expression, thereby affecting the migration and invasion of breast cancer cells.
microRNAs (miRNAs) have emerged as major regulators of the initiation and progression of human cancers, including breast cancer. The aim of this study is to determine the expression pattern of miR-96 in breast cancer and to investigate its biological role during tumorigenesis. We showed that miR-96 was significantly upregulated in breast cancer. We then investigated its function and found that miR-96 significantly promoted cell proliferation, migration and invasion in vitro and enhanced tumor growth in vivo. Furthermore, we explored the molecular mechanisms by which miR-96 contributes to breast cancer progression and identified PTPN9 (protein tyrosine phosphatase, non-receptor type 9) as a direct target gene of miR-96. Finally, we showed that PTPN9 had opposite effects to those of miR-96 on breast cancer cells, suggesting that miR-96 may promote breast tumorigenesis by silencing PTPN9. Taken together, this study highlights an important role for miR-96 in the regulation of PTPN9 in breast cancer cells and may provide insight into the molecular mechanisms of breast carcinogenesis.
Background: Cancer-associated fibroblasts (CAFs) have been shown to be among the most prominent cells in tumor microenvironment and play a significant role in accelerating tumor metastasis by interacting with other type of cells. Tumor-associated macrophages (TAMs), the predominant tumor-infiltrating immune cells, also play important roles in cancer progression. Here, we aimed to evaluate the effects of CAFs on infiltration of TAMs and lymphatic metastasis in triple-negative breast cancer (TNBC).Material and methods: The study included 278 patients with histologically confirmed TNBC. Immunohistochemical staining of α-smooth muscle actin and fibroblast activation protein were used to identify CAFs. Polarized functional status of infiltrated TAMs was detected by expression of CD163. The clinicopathological features were assessed from all the patients' medical records.Results: The CAFs-related markers were found to be expressed more frequently in TNBC patents with aggressive behaviors, including recurrence and poor histological differentiation. High activation of CAFs was positively correlated with elevated infiltration of polarized CD163-positive TAMs and lymph node metastasis in TNBC patients. Multivariate Cox analysis revealed that the activation of CAFs, TAMs infiltration, and lymph node metastasis were independent prognostic factors for disease-free survival in TNBC patients.Conclusion: Cancer-associated fibroblasts were associated with infiltration of CD163-positive macrophages and lymphatic metastasis, and may be potential prognostic predictors of TNBC.
Increasing evidence suggests the involvement of microRNA-381 (miR-381) in chemoresistance of cancer treatment. However, its function and molecular mechanisms in breast cancer chemoresistance are still not well elucidated. In the present study, we aimed to investigate the functional role of miR-381 in cisplatin (DDP) resistance of breast cancer and discover the underlying molecular mechanism. The expression levels of miR-381 and MDR1 were detected by quantitative real-time PCR (qRT-PCR) and Western blot analysis in breast cancer tissues and cell lines. The DDP sensitivity and cell apoptosis of breast cancer cells were determined by MTT assay and flow cytometric analysis, respectively. The relationship between miR-381 and MDR1 was explored by target prediction and luciferase reporter analysis. miR-381 was decreased in DDP-resistant breast cancer tissues and cell lines. Low miR-381 expression was correlated with poor prognosis of breast cancer patients. miR-381 overexpression improved DDP sensitivity of MCF-7/DDP and MDA-MB-231/DDP cells. Conversely, miR-381 inhibition lowered the response of MCF-7 and MDA-MB-231 to DPP. Moreover, miR-381 could directly suppress multidrug resistance 1 (MDR1) expression. MDR1 knockdown could overcome DDP resistance in MCF-7/DDP and MDA-MB-231/DDP cells, while MDR1 overexpression led to DDP resistance in MCF-7 and MDA-MB-231 cells. Notably, MDR1 overexpression counteracted the inductive effect of miR-381 mimics on DDP sensitivity of MCF-7/DDP and MDA-MB-231/DDP cells. On the contrary, miR-381 inhibition-mediated DDP resistance in MCF-7 and MDA-MB-231 cells was reversed by MDR1 knockdown. In summary, miR-381 could overcome DDP resistance of breast cancer by directly targeting MDR1, providing a novel therapeutic target for breast cancer chemoresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.