Bone and fat cells share a common progenitor, stromal/mesenchymal stem cells (MSCs), that can differentiate into osteoblasts or adipocytes. Osteogenesis and adipogenesis of MSCs maintain homeostasis under physiological conditions. The disruption of this homeostasis leads to bone-related metabolic diseases. For instance, reduction in bone formation, which is usually accompanied by an increase in bone marrow adipogenesis, occurs with aging, immobility, or osteoporosis. Thus, it is crucial to gain an understanding of how osteogenic and adipogenic lineages of MSCs are regulated. Here, we present evidence that let-7 is a positive regulator of bone development. Using gain-and loss-of-function approaches, we demonstrate that let-7 markedly promotes osteogenesis and suppresses adipogenesis of MSCs in vitro. Moreover, let-7 could promote ectopic bone formation of MSCs in vivo. Subsequent studies further demonstrated that let-7's effects are mediated through the repression of high-mobility group AT-hook 2 (HMGA2) expression. RNAi depletion of HMGA2 could also enhance osteogenesis and repress adipogenesis. Overall, we found a novel role of let-7/HMGA2 axis in regulating the balance of osteogenesis and adipogenesis of MSCs. Thus, let-7 can be used as a novel therapeutic target for disorders that are associated with bone loss and adipocyte accumulation.
Transplantation using stem cells including bone marrow mesenchymal stem cells (BMSCs) is emerging as a potential regenerative therapy after ischemic attacks in the heart and brain. The migration capability of transplanted cells is a critical cellular function for tissue repair. Based on our recent observations that hypoxic preconditioning (HP) has multiple benefits in improving stem cell therapy and that the potassium Kv2.1 channel acts as a promoter for focal adhesion kinase (FAK) activation and cell motility, the present investigation tested the hypothesis that HP treatment can increase BMSC migration via the mechanism of increased Kv2.1 expression and FAK activities. BMSCs derived from green fluorescent protein-transgenic mice were treated under either normoxic (N-BMSC) or hypoxic (0.5% O2) (HP-BMSC) conditions for 24 h. Western blot analysis showed HP selectively upregulated Kv2.1 expression while leaving other K+ channels, such as Kv1.5 and Kv1.4, unaffected. Compared with normoxic controls, significantly larger outward delayed rectifier K+ currents were recorded in HP-BMSCs. HP enhanced BMSC migration/homing activities in vitro and after intravenous transplantation into rats subjected to permanent myocardial infarction (MI). The HP-promoted BMSC migration was inhibited by either blocking K+ channels or knocking down Kv2.1. Supporting a relationship among HP, Kv2.1, and FAK activation, HP increased phosphorylation of FAK397 and FAK576/577, and this effect was antagonized by blocking K+ channels. These findings provide novel evidence that HP enhances the ability of BMSCs to migrate and home to the injured region; this effect is mediated through a regulatory role of Kv2.1 on FAK phosphorylation/activation.
Mesenchymal stem cells (MSCs) can differentiate into several distinct cell types, including osteoblasts and adipocytes. The balance between osteogenic and adipogenic differentiation is disrupted in several osteogenic-related disorders, such as osteoporosis. So far, little is known about the molecular mechanisms that drive final lineage commitment of MSCs. In this study, we revealed that miR-17-5p and miR-106a have dual functions in the modulation of human adipose-derived mesenchymal stem cells (hADSCs) commitment by gain- and loss-of-function assays. They could promote adipogenesis and inhibit osteogenesis. Luciferase reporter assay, western blot and ELISA suggested BMP2 was a direct target of miR-17-5p and miR-106a. Downregulation of endogeneous BMP2 by RNA interference suppressed osteogenesis and increased adipogenesis, similar to the effect of miR-17-5p and miR-106a upregulation. Moreover, the inhibitory effects of miR-17-5p on osteogenic and adipogenic differentiation of hADSCs could be reversed by BMP2 RNA interference. In conclusion, miR-17-5p and miR-106a regulate osteogenic and adipogenic lineage commitment of hADSCs by directly targeting BMP2, and subsequently decreased osteogenic TAZ, MSX2 and Runx2, and increased adipogenic C/EBPα and PPARγ.
Patients exposed to a surgical safety checklist experience better postoperative outcomes, but this could simply reflect wider quality of care in hospitals where checklist use is routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.