Recently, an connection between Short-chain fatty acids (SCFAs) produced by intestinal microbiota and kidney has been revealed. The aim of this study was to explore whether SCFAs or their specific G protein-coupled receptors 43 (GPR43) agonist inhibit oxidative stress and inflammatory response in glomerular mesangial cells (GMCs) induced by high glucose and lipopolysaccharide (LPS). Our research showed that treatment with SCFAs, especially acetate and butyrate, or GPR43 agonist significantly inhibited GMCs proliferation induced by high glucose and LPS, and then reversed the production of reactive oxygen species (ROS) and malondialdehyde (MDA) but increased levels of antioxidant enzyme superoxide dismutase (SOD). Furthermore, SCFAs or GPR43 agonist obviously increased the protein expression of GPR43 induced by high glucose and LPS, but diminished the expression of adhesion molecule intercellular adhesion molecule-1 (ICAM-1), and then decreased the proinflammatory cytokine monocyte chemoattractant protein (MCP-1) and interleukin-1β (IL-1β) release from GMCs stimulated by the high glucose and LPS. These combined results support the hypothesis that SCFAs or GPR43 agonist can inhibit oxidative stress and inflammation of GMCs induced by high glucose and LPS, suggesting that SCFAs induced signaling pathway may act as new therapeutic targets of diabetic nephropathy (DN).
The activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome have been implicated in the initiation or progression of atherosclerosis. Recent research showed that irisin, a newly discovered adipomiokine, alleviates endothelial dysfunction in type 2 diabetes partially via reducing oxidative/nitrative stresses, suggesting that irisin may be a promising candidate for the treatment of vascular complications of diabetes. However, the association between irisin and NLRP3 inflammasome in the pathogenesis of atherosclerosis remains unclear. In the present study, we cultured human umbilical vein endothelial cells (HUVECs) in advanced glycation end products (AGEs) medium; exogenous irisin (0.01, 0.1, 1 μg/ml) were used as an intervention reagent. siRNA and adenoviral vector were constructed to realize silencing and over-expression of NLRP3 gene. Our data showed that irisin significantly reversed AGEs-induced oxidative stress and NLRP3 inflammasome signaling activation (p < 0.05), and increased the endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production in a dose-dependent manner (p < 0.05). siRNA-mediated knockdown NLRP3 facilitated the irisin-mediated anti-inflammatory and antiatherogenic effects (p < 0.05). However, these irisin-mediated effects were reversed by over-expression NLRP3 (p < 0.05). Taken together, our results reveal that irisin alleviates AGEs-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling, suggest a likely mechanism for irisin-induced therapeutic effect in vascular complications of diabetes.
Previous studies have shown that the incidence of diabetes is higher when women come to menopause. This study was carried out to examine the effects of combined estrogen replacement therapy (ERT) on diabetes in postmenopausal women. PubMed/MEDLINE was searched for English-language articles published between January 1997 and June 2011. Studies that examined ERT on the incidence of diabetes and randomized clinical trials that evaluated combined ERT (estrogen plus progesterone) on diabetic indices in postmenopausal women were included. Pooled relative risks were calculated using a random- or a fixed-effects model. Sixteen studies comprising 17,971 cases were included. Based on the pooled data, ERT significantly reduced the incidence of diabetes [odds ratio (OR), 0.61; 95% confidence interval (CI), 0.55-0.68, ERT past/current/continuous use vs. never use; OR, 0.57; 95% CI, 0.51-0.65, ERT current/continuous use vs. past/never use]. Women with combined ERT have significantly lower levels of fasting plasma glucose (mean difference, -1.41 mM/L; 95% CI, -2.49 to -0.33 mM/L) and HbA1c (mean difference, -0.73%; 95% CI, from -1.28 to -0.18%) compared with placebo. Furthermore, combined ERT dramatically reduced plasma total cholesterol (mean difference, -0.34 mM/L; 95% CI, from -0.53 to -0.15 mM/L) and low-density lipoprotein (mean difference, -0.43 mM/L; 95% CI, from -0.71 to -0.14 mM/L) but slightly increased high-density lipoprotein (mean difference, 0.02 mM/L; 95% CI, from -0.07 to 0.12 mM/L) levels as compared with placebo control. This systemic review and meta-analysis provides evidence that postmenopausal women taking low-dose combined ERT have a decreased risk of developing diabetes and have better diabetic control.
Diabetes mellitus (DM) often accompanies liver dysfunction. Astragali Radix is a traditional Chinese herbal medicine that is widely administrated to ameliorate the symptoms of diabetes as well as liver dysfunction, but its acting mechanism is still not yet fully recognized. Advanced glycation end products (AGEs) play a key role in promoting diabetic organ dysfunction. Both hyperglycemia and AGEs can induce insulin resistance, hepatocyte damage and liver dysfunction. We designed this study to explore the effects of the phytoestrogen Calycosin, a major active component of Astragali Radix, on AGEs-induced glucose uptake dysfunction in the hepatocyte cell line and relevant mechanisms. MTT and BrdU methods were applied to evaluate cell viability. 2-NBDG was used to observe glucose uptake by a live cell imaging system. Immunofluorescence method was carried out to investigate GLUT1, GLUT4, and RAGE protein expressions on cell membrane. cAMP content was determined by an EIA method. We found Calycosin concentration-dependently ameliorated AGEs-induced hepatocyte viability damage. AGEs dramatically reduced basal glucose uptake in hepatocytes, and this reduction could be reversed by Calycosin administration. By immunofluorescence detection, we observed that Calycosin could inhibit AGEs-induced GLUT1 expression down-regulation via estrogen receptor (ER). Furthermore, Calycosin decreased AGEs-promoted RAGE and cAMP elevation in hepatocytes. These findings strongly suggest that Calycosin can ameliorate AGEs-promoted glucose uptake dysfunction in hepatocytes; the protection of cell viability and ER-RAGE and GLUT1 pathways play a significant role in this modulation.
Disruption of the endothelial barrier is essential for vascular complications associated with diabetes mellitus, and damage to the endothelial glycocalyx has been demonstrated to participate in this process. Ginsenoside Rg1 (Rg1), the major active component isolated from Panax notoginseng, is widely applied for the protection against vascular injury. The present study aimed to analyze the effect of high glucose on endothelial barrier function and its association with endothelial glycocalyx in human umbilical vein endothelial cells (HUVECs), and explore the potential benefits of Rg1 in protecting endothelial barrier function from high glucose-induced injury. The results indicated that high glucose induced a disorder of the endothelial glycocalyx and increased heparanase mRNA expression in HUVECs, which was reversed by Rg1 treatment. In addition, Rg1 treatment reduced transendothelial electrical resistance and transendothelial albumin passage after high-glucose stimulation. The present study suggested that high glucose caused a disruption in the endothelial glycocalyx and increased heparanase expression, which finally resulted in endothelial barrier dysfunction in HUVECs. Of note, Rg1 has a protective effect on high glucose-induced endothelial barrier dysfunction by attenuating the associated increase in heparanase expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.