In aero-engines applications, nozzle geometric parameters have major effects on the lubricating oil to accurately reach target gears or bearings. To investigate the deviation phenomenon of oil jet flow in the lubrication system, the computational fluid dynamics (CFD) technique integrating with the volume of fluid (VOF) method and SST k- ω turbulence model is adopted to deeply understand the flow characteristics of the nozzle. By leveraging this method, the relationship between nozzle geometry, inlet pressure, jet velocity, and jet deviation are firstly analyzed. The results reveal that a higher average velocity and smaller jet deviation can be determined via adjusting the nozzle geometry. Furthermore, a specific test rig, composed of an oil supply system, target system and data collection system, is set up for oil injection test; experimental outlet velocity and mass flow rate of oil passing through the hole on the target plate are monitored and recorded. The experimental findings compare well with numerical results obtained by the CFD method.
Aiming to explore the influence of nozzle layouts on the lubrication and cooling performance of spur gears under oil jet lubrication conditions, this paper introduces a heat-flow coupled analysis method to predict the temperature field of the tooth surface with different nozzle layouts. Firstly, the friction heat formulas integrating the coefficient of friction and average contact stress are presented for calculating heat generation. We also present the impingement depth model, which considers the nozzle orientation parameters, jet velocity, and gear structure of the given spur gear pair for laying out the nozzle. Then, a heat-flow coupled finite element analysis method is exploited to resemble the jet lubrication process and gain the gear temperature characteristics. Finally, the numerical results of this model compare well with those of the experiments, showing that this heat-flow coupled model provides accurate temperature prediction, indicating that the nozzle layouts determined as a function of the oil jet height, deviation distance, and oil injection angle significantly influence the lubrication and cooling performance. Further, this study also reveals that the lubrication performance in cases where the nozzle approaches the side of the pinion is relatively superior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.