Spinal cord injury (SCI) is one of the most common devastating injuries, which causes permanent disabilities such as paralysis and loss of movement or sensation. The precise pathogenic mechanisms of the disease remain unclear, and, as of yet, there is no effective cure. Mesenchymal stem cells (MSCs) show promise as an effective therapy in the experimental models of SCI. MSCs secrete various factors that can modulate a hostile environment, which is called the paracrine effect. Among these paracrine molecules, exosome is considered to be the most valuable therapeutic factor. Thus, exosomes from MSCs (MSCs-exosomes) can be a potential candidate of therapeutic effects of stem cells. The present study was designed to investigate the effect of whether systemic administration of exosomes generated from MSCs can promote the function recovery on the rat model of SCI in vivo. In the present study, we observed that systemic administration of MSCs-exosomes significantly attenuated lesion size and improved functional recovery post-SCI. Additionally, MSCs-exosomes treatment attenuated cellular apoptosis and inflammation in the injured spinal cord. Expression levels of proapoptotic protein (Bcl-2-associated X protein) and proinflammatory cytokines (tumor necrosis factor alpha and interleukin [IL]-1β) were significantly decreased after MSCs-exosomes treatment, whereas expression levels of antiapoptotic (B-cell lymphoma 2) and anti-inflammatory (IL-10) proteins were upregulated. Further, administration of MSCs-exosomes significantly promoted angiogenesis. These results show, for the first time, that systemic administration of MSCs-exosomes attenuated cell apoptosis and inflammation, promoted angiogenesis, and promoted functional recovery post-SCI, suggesting that MSCs-exosomes hold promise as a novel therapeutic strategy for treating SCI.
Multiple cellular, molecular, and biochemical changes contribute to the etiology and treatment outcome of contusion spinal cord injury (SCI). Dysregulation of microRNAs (miRNAs) has been found following SCI in recent studies. However, little is known about the functional significance of the unique role of miRNAs in SCI. We analyzed the miRNA expression patterns 1 and 3 days following rat SCI using miRNA microarray. Microarray data revealed that nine miRNAs were upregulated and five miRNAs were downregulated 1 day post-injury, and that three miRNAs were upregulated and five miRNAs were downregulated 3 days post-injury, in the sites of contused when compared with sham rat spinal cords. Because miR-21 was one of the miRNAs being most significantly upregulated, we investigated its function. Knockdown of miR-21 by antagomir-21 led to attenuated recovery in hindlimb motor function, increased lesion size, and decreased tissue sparing in rats. Compared with the negative control group, treatment with antagomir-21 significantly increased apoptosis following SCI. Pro-apoptosis genes Fas ligand (FasL), phosphatase and tensin homolog (PTEN), and programmed cell death protein 4 (PDCD4) were proved to be direct targets of miR-21 in many diseases and cell types. In vivo treatment with antagomir-21 increased the expression of FasL and PTEN, but did not affect PDCD4. These results suggested that miR-21 played an important role in limiting secondary cell death following SCI, and that the protective effects of miR-21 might have been the result of its regulation on pro-apoptotic genes. Thus, miR-21 may play an important role in the pathophysiology of SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.