An optimal maintenance scheduling strategy for bridge networks can generate an efficient allocation of resources with budget limits and mitigate the perturbations caused by maintenance activities to the traffic flows. This research formulates the optimal maintenance scheduling problem as a bi-level programming model. The upper-level model is a multi-objective nonlinear programming model, which minimizes the total traffic delays during the maintenance period and maximizes the number of bridges to be maintained subject to the budget limit and the number of crews. In the lower-level, the users’ route choice following the upper-level decision is simulated using a modified user equilibrium model. Then, the proposed bi-level model is transformed into an equivalent single-level model that is solved by the simulated annealing algorithm. Finally, the model and algorithm are tested using a highway bridge network. The results show that the proposed method has an advantage in saving maintenance costs, reducing traffic delays, minimizing makespan compared with two empirical maintenance strategies. The sensitivity analysis reveals that traffic demand, number of crews, availability of budget, and decision maker’s preference all have significant effects on the optimal maintenance scheduling scheme for bridges including time sequence and job sequence.
In this paper, we present the investigation of a back-illuminated heterojunctions ultraviolet detector, which were fabricated by depositing Ag-doped ZnO based (ZnO-TiO 2 ) thin film on transparent conductive layer of ITO coated quartz substrate though the reactive radio-frequency (RF) magnetron sputtering at higher oxygen pressure. The p-n junction characteristic is confirmed by current-voltage (I-V) measurements. The turn-on voltage was 6 V, with a low leakage current under reverse bias (-5 V), corresponding values was just 0.2 nA . It is clearly showed the rectifying characteristics of typical p-n junction's rectifier behaviors. The structural, component and UV (365 nm, 1400 μW/cm 2 ) photoresponse properties were explored by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray energy dispersive spectrometer (EDS) and Tektronix oscilloscope. The results showed that: Ag in substitution form in the ZnO lattice, Ag doping concentration is low, the sample is highly c-axis preferred orientation,With the increase in doped Ag volume, ZnO film of 002 peaks no longer appear. The surface of the Ag doped ZnO based film exhibits a smooth surface and very dense structure,no visible pores and defects over the film were observed.The ultraviolet response time measurements showed rise and fall time are several seconds Level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.