The primary objective of this pilot study was to investigate the feasibility of regular consumption of fermented vegetables for six weeks on markers of inflammation and the composition of the gut microflora in women (clinical trials ID: NTC03407794). Thirty-one women were randomized into one of three groups: 100 g/day of fermented vegetables (group A), 100 g/day pickled vegetables (group B), or no vegetables (group C) for six weeks. Dietary intake was assessed by a food frequency questionnaire and blood and stool samples were provided before and after the intervention for measurement of C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and lipopolysaccharide binding protein (LBP). Next-generation sequencing of the V4 region of the 16S rRNA gene was performed on the Illumina MiSeq platform. Participants’ ages ranged between 18 and 69 years. Both groups A and B had a mean daily consumption of 91g of vegetables for 32 and 36 days, respectively. Serum CRP ranged between 0.9 and 265 ng/mL (SD = 92.4) at baseline, while TNF-α and LBP concentrations ranged between 0 and 9 pg/mL (SD = 2.3), and 7 and 29 μg/mL (SD = 4.4), respectively. There were no significant changes in levels of inflammatory markers among groups. At timepoint 2, group A showed an increase in Faecalibacterium prausnitzii (P = 0.022), a decrease in Ruminococcus torques (P<0.05), and a trend towards greater alpha diversity measured by the Shannon index (P = 0.074). The findings indicate that consumption of ~100 g/day of fermented vegetables for six weeks is feasible and may result in beneficial changes in the composition of the gut microbiota. Future trials should determine whether consumption of fermented vegetables is an effective strategy against gut dysbiosis.
Bumble bees and honey bees are of vital importance for tomato pollination, although honey bees are less attracted to tomato flowers than bumble bees. Little is known about how tomato flower volatile compounds influence the foraging behaviors of honey bees and bumble bees. In this study, compounds of tomato flower volatiles were detected by gas chromatography–mass spectrometry. Electroantennography (EAG) and a dynamic two-choice olfactometer were used, respectively, to compare the differences of antennal and behavioral responses between Apis mellifera and Bombus terrestris towards selected volatile compounds. A total of 46 compounds were detected from the tomato flower volatiles. Of the 16 compounds tested, A. mellifera showed strong antennal responses to 3 compounds (1-nonanal, (+)-dihydrocarvone, and toluene) when compared with a mineral oil control, and B. terrestris showed 7 pronounced EAG responses (1,3-xylene, (+)-dihydrocarvone, toluene, piperitone, eucarvone, 1-nonanal, and β-ocimene). Additionally, 1-nonanal and (+)-dihydrocarvone elicited significant avoidance behavior of A. mellifera, but not of B. terrestris. In conclusion, bumble bees are more sensitive to the compounds of tomato flower volatiles compared to honey bees, and honey bees showed aversion to some compounds of tomato flower volatiles. The findings indicated that compounds of flower volatiles significantly influenced bee foraging preference for tomato.
As important pollinators, honeybees and bumblebees present a pollination behavior that is influenced by flower volatiles through the olfactory system. In this study, volatile compounds from melon flowers were isolated and identified by headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS), and their effects on Apis mellifera and Bombus terrestris were investigated by electroantennogram (EAG) and behavior tests (Y-tube olfactometer). The results showed that 77 volatile compounds were detected in melon flowers, among which the relative content of aldehydes was the highest (61.34%; 82.09%). A. mellifera showed a strong EAG response to e-2-hexenal, e-2-octenal, and 1-nonanal. B. terrestris showed a strong EAG response to e-2-hexenal, e-2-octenal, 2,5-dimethyl-benzaldehyde, benzaldehyde and benzenepropanal. In behavior tests, the volatiles with the highest attractive rate to A. mellifera were e-2-hexenal (200 μg/μL, 33.33%) and e-2-octenal (300 μg/μL, 33.33%), and those to B. terrestris were e-2-hexenal (10 μg/μL, 53.33%) and 2,5-dimethyl-benzaldehyde (100 μg/μL, 43.33%). E-2-hexenal and e-2-octenal were more attractive to A. mellifera than B. terrestris, respectively (10 μg/μL, 10 μg/μL, 200 μg/μL). In conclusion, the volatiles of melon flowers in facilities have certain effects on the electrophysiology and behavior of bees, which is expected to provide theoretical and technical support for the pollination of A. mellifera and B. terrestris in facilities.
High temperature affects behavior, physiology, survival, and the expression of related genes in adult honeybees. Apis mellifera is the common pollinator in greenhouse and is susceptible to high temperature stress. To further explore the molecular basis related to heat stress, we compared the transcriptome profiles of adult worker bees at 25 and 45°C, and detected the expression patterns of some differentially expressed genes (DEGs) in different tissues by q RT-PCR. Differential expression analysis showed that 277 DEGs were identified, including 167 genes upregulated and 110 genes downregulated after heat stress exposure in adult worker bees. In GO enrichment analysis, DEGs were mostly enriched for protein folding, unfold protein binding, and heme binding terms. Protein processing in endoplasmic reticulum and longevity regulating pathway-multiple species were significantly enriched in KEGG. The expression levels of 16 DEGs were consistent with the transcriptome results. The expression patterns of 9 DEGs in different tissues revealed high levels in the thorax, which was supposed that the thorax may be the most important part in the response to heat stress. This study provided valuable data for exploring the function of heat resistance-related genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.