Recommender System (RS) is currently an effective way to solve information overload. To meet users' next click behavior, RS needs to collect users' personal information and behavior to achieve a comprehensive and profound user preference perception. However, these centrally collected data are privacy-sensitive, and any leakage may cause severe problems to both users and service providers. This paper proposed a novel privacy-preserved recommender system framework (PPRSF), through the application of federated learning paradigm, to enable the recommendation algorithm to be trained and carry out inference without centrally collecting users' private data. The PPRSF not only able to reduces the privacy leakage risk, satisfies legal and regulatory requirements but also allows various recommendation algorithms to be applied.
The combination of federated learning and recommender system aims to solve the privacy problems of recommendation through keeping user data locally at the client device during the model training session. However, most existing approaches rely on user devices to fully compute the deep model designed for the large-scale item recommendation; therefore, imposing high calculation and communication overheads on resource-constrained user devices. Consequently, achieving efficient federated recommendations across ubiquitous mobile devices remains an open research problem. To this end, in this paper we propose an efficient and privacy-preserving federated learning framework which is based on the cloud-edge collaboration for large-scale item recommendation called SpFedRec. In our method, to reduce the computation and communication cost of the federated two-tower model, a split learning approach is applied to migrate the item model from participants’ edge devices to the computationally powerful cloud side and compress item data while transmitting. Meanwhile, to enhance the feature representation, the Squeeze-and-Excitation network mechanism is used on the backbone model to optimize the perception of dominant features. Moreover, because the gradients transmitted contain private information about the user; therefore, we propose a multi-party circular secret-sharing chain based on secret sharing for better privacy protection. Extensive experiments using plausible assumptions on two real-world datasets demonstrate that our proposed method improves the average computation time and communication cost by 23% and 49%, respectively. Furthermore, the proposed model accomplishes comparable performance with other state-of-art federated recommendation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.