Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100-2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700-1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.
Traditional methods used to predict the ground-wave field strength at low frequency are not applicable for terrains with serious irregularities because of the analytical approximations. In this paper, the two dimensional finite-difference time-domain (FDTD) algorithm is applied to calculate the field strength of the low frequency (LF) ground wave propagating over irregular terrains. The propagation characteristics are studied as functions of the mountain's gradient, height, and width, respectively. We also focus on studying the cases with multiple mountains in the path. Moreover, the error of the traditional integral equation method is analyzed by comparisons. The results show that when the mountain's gradient and height are high, additional oscillations in the field strength will appear in front of and in the mountain region due to the wave reflection and scattering. At last, measurements of the Loran-C signals are taken along a real path between Pucheng and Tongchuan in Shaanxi province, China. It is found that most of the measured and FDTD results have good agreements while some still have big errors owing to the model approximation. The FDTD method gets better precision than the integral equation method in the irregular terrain.Index Terms-Finite-difference time-domain (FDTD) methods, ground-wave propagation, irregular terrain, low frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.