Owing to high specific capacity of ∼250 mA h g, lithium-rich layered oxide cathode materials (LiNi CoMnO) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The LiNiMnO cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.
Flexible electronics with highly thermal stability and mechanical strength are highly needed in advanced transportation systems. Semiconducting single‐walled carbon nanotubes are one of the leading active materials for such thin film transistors because they are printable, flexible, thermally stable, and mechanically strong. Dielectrics with large capacitance are another major component, and polymer electrolytes are printed for flexible electronics, but they suffer from poor mechanical strength and low operating temperature. Here, a transparent, mechanically flexible, and thermally stable polyfluorinated electrolyte (PFE) is developed with high capacitance by curing printed polyfluorinated resin (PFR) and ionic liquid composite at high temperature. PFE inherits the mechanical flexibility and thermal stability from PFR. The immobilized ionic liquid inside the porous structures of PFE accounts for the high capacitance. With top‐gated PFE, fully printed electronically pure single‐chirality (6,5) single‐walled carbon nanotube (SWCNT) thin‐film transistors (TFTs) exhibit air stable, consistent, and reliable ambipolar characteristics with high transconductance (1 mS) and small subthreshold swing (<0.15 V dec−1) at low voltage in ambient air for p‐type and n‐type carriers, and >105 ON/OFF current ratio for both carriers under low operation voltage.
Li3VO4 has been regarded as a new-type anode of lithium-ion batteries in recent years, which has a high theoretical specific capacity of 394 mAh g(-1), a proper potential for Li(+) insertion/deinsertion (∼1 V), and a good rate capacity. However, its low initial Coulombic efficiency, poor conductivity, and poor cycle performance restricts its development. In order to figure out the cause of the low initial Coulombic efficiency of Li3VO4 material, the nanosized Li3VO4 material was synthesized by citric acid-assisted sol-gel method. The lithium storage behaviors of the prepared Li3VO4 material were studied by in-situ XRD and in-situ EIS techniques. In-situ XRD results indicated that there was irreversible phase transformation of Li3VO4 during the initial charging/discharging process. In-situ EIS experiment was performed during the potentiostatic intermittent titration technique (PITT) process to discuss the formation of the solid electrolyte interface (SEI) on the Li3VO4 and the kinetics of lithium-ion diffusion. It is worth pointing out that this is the first time to prove the existence of SEI on Li3VO4 during the initial charging/discharging process by in-situ EIS experiment. It turned out that the irreversible phase transformation and the formation of SEI on Li3VO4 were the two important reasons causing the low initial Coulombic efficiency of Li3VO4 material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.