Accurate estimation of the canopy chlorophyll content (CCC) plays a key role in quantitative remote sensing. Maize (Zea mays L.) is a high-stalk crop with a large leaf area and deep canopy. It has a non-uniform vertical distribution of the leaf chlorophyll content (LCC), which limits remote sensing of CCC. Therefore, it is crucial to understand the vertical heterogeneity of LCC and leaf reflectance spectra to improve the accuracy of CCC monitoring. In this study, CCC, LCC, and leaf spectral reflectance were measured during two consecutive field growing seasons under five nitrogen treatments. The vertical LCC profile showed an asymmetric ‘bell-shaped’ curve structure and was affected by nitrogen application. The leaf reflectance also varied greatly between spatio–temporal conditions, which could indicate the influence of vertical heterogeneity. In the early growth stage, the spectral differences between leaf positions were mainly concentrated in the red-edge (RE) and near-infrared (NIR) regions, whereas differences were concentrated in the visible region during the mid-late filling stage. LCC had a strong linear correlation with vegetation indices (VIs), such as the modified red-edge ratio (mRER, R2 = 0.87), but the VI–chlorophyll models showed significant inversion errors throughout the growth season, especially at the early vegetative growth stage and the late filling stage (rRMSE values ranged from 36% to 87.4%). The vertical distribution of LCC had a strong correlation with the total chlorophyll in canopy, and sensitive leaf positions were identified with a multiple stepwise regression (MSR) model. The LCC of leaf positions L6 in the vegetative stage (R2-adj = 0.9) and L11 + L14 in the reproductive stage (R2-adj = 0.93) could be used to evaluate the canopy chlorophyll status (L12 represents the ear leaf). With a strong relationship between leaf spectral reflectance and LCC, CCC can be estimated directly by leaf spectral reflectance (mRER, rRMSE = 8.97%). Therefore, the spatio–temporal variations of LCC and leaf spectral reflectance were analyzed, and a higher accuracy CCC estimation approach that can avoid the effects of the leaf area was proposed.
Lodging is a common problem in maize production that seriously impacts yield, quality, and the capacity for mechanical harvesting. Evaluation of site-specific lodging risks requires establishment of a method for multi-year monitoring. In this study, spectral images collected by the Sentinel-2 satellite were processed to obtain three types of data: gray-level co-occurrence matrix texture (GLCM), vegetation indices (VIs), and spectral reflectance (SR). Lodging classification models were then established with Random Forest (RF) using each of the three data types separately (the GLCM, VI, and SR models) and in combination (SR+VI model, SR+GLCM model, VI+GLCM mod-el, and SR+VI+GLCM model). By gradually removing features with low importance scores from the SR+VI+GLCM model and analyzing the changes in the overall accuracy (OA), the optimal set of predictive variables was identified and used to construct the optimal model. A model built us-ing data from a single timepoint in 2021 was tested on data collected at a similar timepoint in 2019 and vice versa to assess interannual model generalizability. The results of this study demon-strate that for monitoring maize lodging, models constructed with a single feature type, the GLCM model had significantly lower accuracy compared to the VI and SR models. During certain growth stages, the model constructed with combined features had significantly higher accuracy in monitoring maize lodging compared to models constructed with a single feature. During the pro-cess of selecting the optimal predictive variables, it was found that the accuracy of the model did not increase as the number of predictive variables increased. The results show that the positive and negative validation models had an accuracy of 96.55% and 95.18%, with kappa values of 0.93 and 0.83, respectively. This indicates that the model has strong generality for the same repro-ductive stage between years. This study provides a detailed method for large-scale maize lodging monitoring, allowing for identification of optimal planting practices to reduce the probability of lodging and ultimately improving regional maize yield and quality.
Applications of unmanned aerial vehicle (UAV) spectral systems in precision agriculture require raw image data to be converted to reflectance to produce time-consistent, atmosphere-independent images. Complex light environments, such as those caused by varying weather conditions, affect the accuracy of reflectance conversion. An experiment was conducted here to compare the accuracy of several target radiance correction methods, namely pre-calibration reference panel (pre-CRP), downwelling light sensor (DLS), and a novel method, real-time reflectance calibration reference panel (real-time CRP), in monitoring crop reflectance under variable weather conditions. Real-time CRP used simultaneous acquisition of target and CRP images and immediate correction of each image. These methods were validated with manually collected maize indictors. The results showed that real-time CRP had more robust stability and accuracy than DLS and pre-CRP under various conditions. Validation with maize data showed that the correlation between aboveground biomass and vegetation indices had the least variation under different light conditions (correlation all around 0.74), whereas leaf area index (correlation from 0.89 in sunny conditions to 0.82 in cloudy days) and canopy chlorophyll content (correlation from 0.74 in sunny conditions to 0.67 in cloudy days) had higher variation. The values of vegetation indices TVI and EVI varied little, and the model slopes of NDVI, OSAVI, MSR, RVI, NDRE, and CI with manually measured maize indicators were essentially constant under different weather conditions. These results serve as a reference for the application of UAV remote sensing technology in precision agriculture and accurate acquisition of crop phenotype data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.