Integrated impingement and pin fin cooling devices have comprehensive advantages of hot-side film cooling, internal impingement cooling, large internal heat transfer area and enhanced heat exchange caused by the pin fin arrays, so it is considered a promising cooling concept to meet the requirements of modern advanced aircraft engines. In this paper, experimental study, one dimensional model analysis and numerical simulation were conducted to investigate cooling performance of this kind of cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. The cooling effectiveness was measured by an infrared thermography technique. The target surface was coated carefully with a high quality black paint to keep a uniform high emissivity condition. The measurements were calibrated with thermocouples welded on the surface. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on the cooling effectiveness. The required resistance and internal heat transfer characteristics were obtained from experiments. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The heat transfer intensities inside the specimen played an important role in the performance of cooling. In the last part of this paper, a conjugate numerical simulation was carried out using commercial software FLUENT 6.1. The domain of the numerical simulation included the specimen and the coolant. Detailed temperature contours of the specimen were obtained for various heat transfer boundary conditions. The calculated flow resistance and cooling effectiveness agree well with the experimental data and the predictions with the one-dimensional analysis model. The numerical simulations reveal that the impingement of the coolant jets in the specimen is the main contribution to the high cooling effectiveness.
Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.