Hyperspectral images (HSIs) contain large amounts of spectral and spatial information, and this provides the possibility for ground object classification. However, when using the traditional method, achieving a satisfactory classification result is difficult because of the insufficient labeling of samples in the training set. In addition, parameter adjustment during HSI classification is time-consuming. This paper proposes a novel fusion method based on the maximum noise fraction (MNF) and adaptive random multigraphs for HSI classification. Considering the overall spectrum of the object and the correlation of adjacent bands, the MNF was utilized to reduce the spectral dimension. Next, a multiscale local binary pattern (LBP) analysis was performed on the MNF dimension-reduced data to extract the spatial features of different scales. The obtained multiscale spatial features were then stacked with the MNF dimension-reduced spectral features to form multiscale spectral-spatial features (SSFs), which were sent into the RMG for HSI classification. Optimal performance was obtained by fusion. For all three real datasets, our method achieved competitive results with only 10 training samples. More importantly, the classification parameters corresponding to different hyperspectral data can be automatically optimized using our method.
As a powerful tool in hyperspectral image (HSI) classification, sparse representation has gained much attention in recent years owing to its detailed representation of features. In particular, the results of the joint use of spatial and spectral information has been widely applied to HSI classification. However, dealing with the spatial relationship between pixels is a nontrivial task. This paper proposes a new spatial-spectral combined classification method that considers the boundaries of adjacent features in the HSI. Based on the proposed method, a smoothing-constraint Laplacian vector is constructed, which consists of the interest pixel and its four nearest neighbors through their weighting factor. Then, a novel large-block sparse dictionary is developed for simultaneous orthogonal matching pursuit. Our proposed method can obtain a better accuracy of HSI classification on three real HSI datasets than the existing spectral-spatial HSI classifiers. Finally, the experimental results are presented to verify the effectiveness and superiority of the proposed method.
In this work, a general method to manipulate the angle of reflection from an arbitrary two-dimensional (2D) surface is proposed by applying an appropriate phase discontinuity along the arbitrary surface. Three surfaces, including plane surface, parabolic surface and circular surface are taken as instances to validate this method. The results show that angle of reflection is conducted to [Formula: see text] for a wave incident to a plane surface at [Formula: see text], while [Formula: see text] for a wave incident to the parabolic and circular surfaces normally. This kind of manipulation of acoustic waves for arbitrary reflecting surfaces opens up an avenue for reflected wavefront modulations and associated applications such as anti-sonar technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.