The isotopic composition of neodymium (εNd) extracted from sedimentary Fe-Mn oxyhydroxide offers potential for reconstructing paleo-circulation, but its application depends on extraction methodology and the mechanisms that relate authigenic εNd to bottom water. Here we test methods to extract authigenic εNd from Gulf of Alaska (GOA) sediments and assess sources of leachate Nd, including potential contamination from trace dispersed volcanic ash. We show that one dominant phase is extracted via leaching of core-top sediments. Major and trace element geochemistry demonstrate that this phase is authigenic Fe-Mn oxyhydroxide. Contamination of leachate (authigenic) Nd from detrital sources is insignificant (<1%); our empirical results are consistent with established kinetic mineral dissolution rates and theory. Contamination of extracted εNd from leaching of volcanic ash is below analytical uncertainty. However, the εNd of core-top leachates in the GOA is consistently more radiogenic than bottom water. We infer that authigenic phases record pore water εNd, and the relationships of εNd among bottom water, pore water, authigenic phases and detrital sediments are primarily governed by the exposure time of bottom water to sea-floor sediments, rate of exchange across the sediment-water interface and the reactivity and composition of detrital sediments. We show that this conceptual model is applicable on the Pacific basin scale and provides a new framework to understand the role of authigenic phases in both modern and paleo-applications including the use of authigenic εNd as a paleocirculation tracer.
Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.
New radiocarbon and sedimentological results from the Gulf of Alaska document recurrent millennial-scale episodes of reorganized Pacific Ocean ventilation synchronous with rapid Cordilleran Ice Sheet discharge, indicating close coupling of ice-ocean dynamics spanning the past 42,000 years. Ventilation of the intermediate-depth North Pacific tracks strength of the Asian Monsoon, supporting a role for moisture and heat transport from low-latitudes in North Pacific paleoclimate. Changes in 14C age of intermediate waters are in phase with peaks in Cordilleran ice-rafted debris delivery, and both consistently precede ice discharge events from the Laurentide Ice Sheet, known as Heinrich Events. This timing precludes an Atlantic trigger for Cordilleran Ice Sheet retreat, and instead implicates the Pacific as an early part of a cascade of dynamic climate events with global impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.