Grid-connected microgrids comprising renewable energy, energy storage systems and local load, play a vital role in decreasing the energy consumption of fossil diesel and greenhouse gas emissions. A distribution power network connecting several microgrids can promote more potent and reliable operations to enhance the security and privacy of the power system. However, the operation control for a multi-microgrid system is a big challenge. To design a multi-microgrid power system, an intelligent multi-microgrids energy management method is proposed based on the preference-based multi-objective reinforcement learning (PMORL) techniques. The power system model can be divided into three layers: the consumer layer, the independent system operator layer, and the power grid layer. Each layer intends to maximize its benefit. The PMORL is proposed to lead to a Pareto optimal set for each object to achieve these objectives. A non-dominated solution is decided to execute a balanced plan not to favor any particular participant. The preference-based results show that the proposed method can effectively learn different preferences. The simulation outcomes confirm the performance of the PMORL and verify the viability of the proposed method.
Microgrids with energy storage systems and distributed renewable energy sources play a crucial role in reducing the consumption from traditional power sources and the emission of CO 2 . Connecting multi microgrid to a distribution power grid can facilitate a more robust and reliable operation to increase the security and privacy of the system. The proposed model consists of three layers, smart grid layer, independent system operator (ISO) layer and power grid layer. Each layer aims to maximise its benefit. To achieve these objectives, an intelligent multi-microgrid energy management method is proposed based on the multi-objective reinforcement learning (MORL) techniques, leading to a Pareto optimal set. A non-dominated solution is selected to implement a fair design in order not to favour any particular participant. The simulation results demonstrate the performance of the MORL and verify the viability of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.