We load the natural active molecules onto the spin film in an array using electrospinning techniques. The electrospun active molecular membranes we obtain in optimal parameters exhibit excellent capacity for scavenging radical. The reaction capacity of three different membranes for free radicals are shown as follow, glycyrrhizin acid membrane > quercetin membrane > α-mangostin membrane. The prepared active molecular electrospun membranes with a large specific surface area and high porosity could increase the interaction area between active molecules and free radicals. Additionally, it also has improved anti-airflow impact strength, anti-contaminant air molecular interference ability, and the ability to capture free radicals.
In a ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction-diffusion system with reagent concentration gradients, we observed in the experiment a type of spirals with local waves forming groups. Here, we propose an interpretation of the wave grouping phenomenon. The wave grouping mechanism can be well explained in terms of the cooperation of the excitability gradient and the Doppler effect induced by spiral tip's meandering. In the simulation based on three-dimensional reaction-diffusion system using Oregonator model, spiral patterns analogous to the experiment observation are well reproduced when the parameter gradient in the z direction is introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.