A Monte Carlo implicit simulation program, Implicit Stratonovich Stochastic Differential Equations (ISSDE), is developed for solving stochastic differential equations (SDEs) that describe plasmas with Coulomb collision. The basic idea of the program is the stochastic equivalence between the Fokker–Planck equation and the Stratonovich SDEs. The splitting method is used to increase the numerical stability of the algorithm for dynamics of charged particles with Coulomb collision. The cases of Lorentzian plasma, Maxwellian plasma and arbitrary distribution function of background plasma have been considered. The adoption of the implicit midpoint method guarantees exactly the energy conservation for the diffusion term and thus improves the numerical stability compared with conventional Runge–Kutta methods. ISSDE is built with C++ and has standard interfaces and extensible modules. The slowing down processes of electron beams in unmagnetized plasma and relaxation process in magnetized plasma are studied using the ISSDE, which shows its correctness and reliability.
In this article, we present a first-principles electromagnetic–kinetic simulation of the slow-wave branch of the lower hybrid waves (LHWs) in electron–deuterium plasmas with real ion–electron mass ratios. Several models of two-dimensional slab configuration containing a grill antenna are constructed using different plasma parameters. Based on our recently developed fully kinetic charge-conservative electromagnetic non-canonical symplectic particle-in-cell method, we studied the coupling, propagation, absorption and current driving effect of LHWs in hot plasmas. The results for the coupling coefficient of the grill antenna, accessibility condition, and electron Landau damping rate show good agreement with theory and previous simulation. The long-term non-linear energy and current deposition of propagating LHWs are also presented, which show a decrement of heating and current-driving efficiency compared with the linear theoretical prediction. The collision effect between electrons and ions is shown to be important for actually driving the current. The relation between the density of the current generated and the amplitude of the LHW is given, which shows a qualitative agreement with the 1D theoretical prediction.
This paper uses the implicit Monte-Carlo full-orbit-following parallel program ISSDE to calculate the prompt loss and slowing down process of neutral beam injection (NBI) generated fast ions due to Coulomb collisions in the equilibrium configuration of Experimental Advanced Superconducting Tokamak (EAST). This program is based on the weak equivalence of the Fokker-Planck equation under Rosenbluth MacDonald Judd (RMJ) potential and Stratonovich stochastic differential equation (SDE). The prompt loss with the LCFS boundary and the first wall (FW) boundary of the two co-current neutral injection beams are studied. Simulation results indicate that the loss behavior of fast ions using the FW boundary is very different from that of the LCFS boundary, especially for fast ions with a large gyration radius. According to our calculations, about 5.11% of fast ions generated by perpendicular injection drift out of the LCFS and then return inside the LCFS to be captured by the magnetic field. The prompt loss ratio of fast ions and the ratio of orbital types depend on the initial distribution of fast ions in the $P_{\zeta}-\Lambda$ space. Under the effect of Coulomb collisions, the pitch-angle scattering and stochastic diffusion happens, which will cause more fast ion loss. For short time scales, among the particles lost due to collisions, the fraction of banana ions reaches 92.31% in the perpendicular beam and 58.65% in the tangential beam when the fraction of banana ions in the tangential beam is 3.4% of the total ions, which means that the effect of Coulomb collisions on banana fast ions is more significant. For long time scales, the additional fast ion loss caused by Coulomb collisions of tangential and perpendicular beams accounted for 16.21% and 25.05% of the total particles, respectively. We have also investigated the slowing down process of NBI fast ions.
The helicon plasma source is widely used in various fields due to its high ionisation rate. The helicon wave dispersion relationship indicates that the density is proportional to axial wavenumbers. In this study, we systematically investigated how the plasma density varies with the axial wavenumber by employing several phased antenna systems. The antenna comprised different numbers of loops, and each loop was connected to an individual radio frequency power source. We adjusted the plasma density from approximately 10 11 to 10 13 cm −3 . Such two orders of magnitude adjustments may provide a novel operation mode for helicon applications. The density was linearly proportional to the axial wavenumber, when the axial wavenumber was not exceptionally large. In addition, in a low magnetic field, density peaks were observed in all three antenna configurations. The density peak appears irrespective of whether the Landau damping frequency is higher than collision frequency. This finding suggested that Landau damping and other mechanisms can lead to such a phenomenon of low field density peak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.