We describe studies of the pressure driven flow of several classical fluids through lithographically produced channels in which one dimension, the channel height h, is in the micron or nanometer size range. The measured flow rates are compared with theoretical predictions assuming no-slip boundary conditions at the walls of the channel. The results for water agree well with this prediction for h as small as 40 nm ͑our smallest channels͒. However, for hexane, decane, hexadecane, and silicone oil we find deviations from this theory when h is reduced below about 100 nm. The observed flow rates for small h are larger than theoretical expectations, implying significant slip at the walls, and values of the slip length are estimated. The results are compared with previous experimental and theoretical work.
Robust validation of the space–time structure of remotely sensed precipitation estimates is critical to improving their quality and confident application in water cycle–related research. In this work, the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) precipitation product is evaluated against warm season precipitation observations from the North American Monsoon Experiment (NAME) Event Rain Gauge Network (NERN) in the complex terrain region of northwestern Mexico. Analyses of hourly and daily precipitation estimates show that the PERSIANN-CCS captures well active and break periods in the early and mature phases of the monsoon season. While the PERSIANN-CCS generally captures the spatial distribution and timing of diurnal convective rainfall, elevation-dependent biases exist, which are characterized by an underestimate in the occurrence of light precipitation at high elevations and an overestimate in the occurrence of precipitation at low elevations. The elevation-dependent biases contribute to a 1–2-h phase shift of the diurnal cycle of precipitation at various elevation bands. For reasons yet to be determined, the PERSIANN-CCS significantly underestimated a few active periods of precipitation during the late or “senescent” phase of the monsoon. Despite these shortcomings, the continuous domain and relatively high spatial resolution of PERSIANN-CCS quantitative precipitation estimates (QPEs) provide useful characterization of precipitation space–time structures in the North American monsoon region of northwestern Mexico, which should prove useful for hydrological applications.
[1] Using transparent microfluidic cells to study the twophase properties of a synthetic porous medium, we establish that the interfacial area per volume between nonwetting and wetting fluids lifts the ambiguity associated with the hysteretic relationship between capillary pressure and saturation in porous media. The interface between the nonwetting and wetting phases is composed of two subsets: one with a unique curvature determined by the capillary pressure, and the other with a distribution of curvatures dominated by disjoining pressure. This work provides experimental support for recent theoretical predictions that the capillary-dominated subset plays a role analogous to a state variable. Any comprehensive description of multiphase flow properties must include this interfacial area with the traditional variables of pressure and fluid saturation.
We investigated water vapor condensation on a two-tier superhydrophobic surface in an environmental scanning electron microscope (ESEM) and in a customer-designed vapor chamber. We have observed continuous dropwise condensation (DWC) on the textured surface in ESEM. However, a film layer of condensate was formed on the multiscale texture in the vapor chamber. Due to the filmwise condensation, the condensation heat transfer coefficient of the superhydrophobic surface is lower than that of a flat hydrophobic surface especially under high heat flux situations. Our studies indicate that adaptive and prompt condensate droplet purging is the dominant factor for sustaining long-term DWC.
An asymmetric intermolecular, three-component radical-initiated dicarbofunctionalization of 1,1-diarylalkenes with diverse carbon-centered radical precursors and electron-rich heteroaromatics by a copper(I) and chiral phosphoric acid cooperative catalysis strategy has been developed, providing straightforward access to chiral triarylmethanes bearing quaternary all-carbon stereocenters with high efficiency as well as excellent chemo-and enantioselectivity. The key to success is not only the introduction of a sterically demanding chiral phosphoric acid to favor radical difunctionalization over the otherwise remarkable side reactions but also the in situ generation of carbocation intermediates from benzylic radical to realize asymmetric induction with the aid of a removable hydroxy directing group via cooperative interactions with chiral phosphate. Density functional theory calculations elucidated the critical chiral environment created by the hydrogen-bonding and ion-pair interactions between the chiral phosphoric acid catalyst and substrates, which leads to the enantioselective C−C bond formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.