Objectives: This systematic review is conducted to evaluate the effect of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on body composition and cardiorespiratory fitness (CRF) in the young and middle-aged. Methods: Seven databases were searched from their inception to 22 October 2022 for studies (randomized controlled trials only) with HIIT and MICT intervention. Meta-analysis was carried out for within-group (pre-intervention vs. post-intervention) and between-group (HIIT vs. MICT) comparisons for change in body mass (BM), body mass index (BMI), waist circumference (WC), percent fat mass (PFM), fat mass (FM), fat-free mass (FFM), and CRF. Results: A total of 1738 studies were retrieved from the database, and 29 studies were included in the meta-analysis. Within-group analyses indicated that both HIIT and MICT can bring significant improvement in body composition and CRF, except for FFM. Between-group analyses found that compared to MICT, HIIT brings significant benefits to WC, PFM, and VO2peak. Conclusions: The effect of HIIT on fat loss and CRF in the young and middle-aged is similar to or better than MICT, which might be influenced by age (18–45 years), complications (obesity), duration (>6 weeks), frequency, and HIIT interval. Despite the clinical significance of the improvement being limited, HIIT appears to be more time-saving and enjoyable than MICT.
ObjectiveA great number of studies regarding the associations between IL-1B-511, IL-1B+3954 and IL-1RN VNTR polymorphisms within the IL-1gene cluster and coronary heart disease (CHD) have been published. However, results have been inconsistent. In this study, a meta-analysis was performed to investigate the associations.MethodsPublished literature from PubMed and Embase databases were searched for eligible publications. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using random- or fixed- effect model.ResultsThirteen studies (3,219 cases/2,445 controls) for IL-1B-511 polymorphism, nine studies (1,828 cases/1,818 controls) for IL-1B+3954 polymorphism and twelve studies (2,987 cases/ 2,208 controls) for IL-1RN VNTR polymorphism were included in this meta analysis. The results indicated that both IL-1B-511 and IL-1B+3954 polymorphisms were not associated with CHD risk (IL-1B-511 T vs. C: OR = 0.98, 95%CI 0.87–1.09; IL-1B+3954 T vs. C: OR = 1.06, 95%CI 0.95–1.19). Similarly, there was no association between IL-1RN VNTR polymorphism and CHD risk (*2 vs. L: OR = 1.00, 95%CI 0.85–1.17).ConclusionsThis meta-analysis suggested that there were no associations between IL-1 gene cluster polymorphisms and CHD.
Objectives: A systematic review and meta-analysis is conducted to compare the effects of high-intensity interval training (HIIT) combined with fasting (HIIT + fasting) and other interventions (HIIT alone, fasting alone, or normal intervention) in adults with overweight and obesity on body composition (body mass, body mass index (BMI), waist circumference (WC), percent fat mass (PFM), fat mass (FM), fat-free mass (FFM)), maximal oxygen uptake (VO2peak), and glucose metabolism (fasting plasma glucose (FPG)), fasting plasma insulin (FPI)). Methods: The databases of PubMed, the Cochrane Library, Embace, Web of Science, CNKI, Wangfang Data, and CBM were searched from their inception to February 2022. Randomized controlled trials comparing the effects of HIIT + fasting and other interventions on adults with overweight and obesity were included in this meta-analysis. The risk of bias was assessed by the Cochrane risk of bias tool. The effect size was completed by using mean difference (MD) and standard deviation. If there were varying units or large differences among the included studies, the standardized mean difference (SMD) would be used. The certainty of evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Results: Nine randomized controlled trials with 230 overweight and obese adults were conducted in accordance with our inclusion criteria. The results of the meta-analysis revealed that compared to the control group HIIT + fasting had better effects on the body mass, WC, FM, and VO2peak, while there were no significant differences in PFM, FFM, FPG, and FPI. Conclusions: Despite the number of included trials being small and the GRADE of all outcomes being very low, HIIT + fasting has a positive effect on the body composition of overweight and obese adults, and significantly improves VO2peak. For adults with overweight and obesity who have long-term comorbidity, HIIT + fasting was a better way to improve FPG than HIIT alone or fasting alone. More studies are required to investigate different combinations of HIIT + fasting; and the safety of HIIT + fasting intervention on overweight and obese adults.
The objective of this study was to investigate the influences of carbonyl stress induced by malondialdehyde (MDA), a typical intermediate of lipid peroxidation, on intracellular free Ca(2+) concentration ([Ca(2+)](i)) alterations in cultured hippocampal neurons of rat. The microphotographic study clearly demonstrated that the hippocampal neurons became gradually damaged following exposure to different concentrations of MDA. Further study indicated that the plasma membrane Ca(2+)-ATPase (PMCA) activity was inhibited by MDA in a concentration- and time-dependent manner. The supplementation of 100 microM MDA was found to cause a notable early phase increase of [Ca(2+)](i) in hippocampal neuron cultures followed by a more pronounced late-phase elevation of [Ca(2+)](i). Such effect of MDA was prevented by the addition of nimodipine, an inhibitor of L-type calcium channel or by an extracellular Ca(2+) chelator EGTA. The identification of the calcium signalling pathways were studied by applying U73122, an inhibitor of PL-C, and H-89, an inhibitor of protein kinase A (PKA), showing the involvement of PL-C/IP3 pathway but not the PKA/cAMP pathway. These results suggested that MDA-related carbonyl stress caused damages of rat hippocampal neurons by triggering Ca(2+) influx and influencing Ca(2+) homeostasis in cultured neurons, and also MDA may act as a signalling molecule regulating Ca(2+) release from intracellular stores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.