Previous studies demonstrated that the CXC chemokine, MGSA/GRO-alpha and its receptor, CXCR2, are expressed during wound healing by keratinocytes and endothelial cells at areas where epithelialization and neovascularization occur. The process of wound healing is dependent on leukocyte recruitment, keratinocyte proliferation and migration, and angiogenesis. These processes may be mediated in part by CXC chemokines, such as interleukin-8 and MGSA/GRO-alpha. To examine further the significance of CXC chemokines in wound healing, full excisional wounds were created on CXCR2 wild-type (+/+), heterozygous (+/-), or knockout (-/-) mice. Wounds were histologically analyzed for neutrophil and monocyte infiltration, neovascularization and epithelialization at days 3, 5, 7, and 10 postwounding. The CXCR2 -/- mice exhibited defective neutrophil recruitment, an altered temporal pattern of monocyte recruitment, and altered secretion of interleukin-1beta. Significant delays in wound healing parameters, including epithelialization and decreased neovascularization, were also observed in CXCR2 -/- mice. In vitro wounding experiments with cultures of keratinocytes established from -/- and +/+ mice revealed a retardation in wound closure in CXCR2 -/- keratinocytes, suggesting a role for this receptor on keratinocytes in epithelial resurfacing that is independent of neutrophil recruitment. These in vitro and in vivo studies further establish a pathophysiologic role for CXCR2 during cutaneous wound repair.
The MGSA/GRO protein is endogenously expressed in almost 70% of the melanoma cell lines and tumors, but not in normal melanocytes. We have previously demonstrated that over-expression of human MGSA/GROa, b or g in immortalized murine melanocytes (melan-a cells) enables these cells to form tumors in SCID and nude mice. To examine the possibility that the MGSA/GRO eect on melanocyte transformation requires expression of other genes, dierential display was performed. One of the mRNA's identi®ed in the screen as overexpressed in MGSA/GRO transformed melan-a clones was the newly described M-Ras or R-Ras3 gene, a member of the Ras gene superfamily. Over-expression of MGSA/GRO upregulates M-Ras expression at both the mRNA and protein levels, and this induction requires an intact glutamine-leucine-arginine (ELR)-motif in the MGSA/ GRO protein. Western blot examination of Ras expression revealed that K-and N-Ras proteins are also elevated in MGSA/GRO-expressing melan-a clones, leading to an overall increase in the amount of activated Ras. MGSA/GRO-expressing melan-a clones exhibited enhanced AP-1 activity. The eects of MGSA/GRO on AP-1 activation could be mimicked by over-expression of wild-type M-Ras or a constitutively activated M-Ras mutant in control melan-a cells as monitored by an AP-1-luciferase reporter, while expression of a dominant negative M-Ras blocked AP-1-luciferase activity in MGSA/GRO-transformed melan-a clones. In the in vitro transformation assay, over-expression of M-Ras mimicked the eects of MGSA/GRO by inducing cellular transformation in control melan-a cells, while over-expression of dominant negative M-Ras in MGSA/ GROa-expressing melan-a-6 cells blocked transformation. These data suggest that MGSA/GRO-mediated transformation requires Ras activation in melanocytes.
CXC chemokines, macrophage inflammatory protein-2 (MIP-2) and KC, (a cloning designation based on ordinate and abscissa position) as well as the CXC chemokine receptor, CXCR2, are expressed in a variety of cells and tissues in adult mice. Targeted deletion of the gene encoding murine CXCR2 does not result in obvious changes in the development of the organ system of the mouse, though the CXCR2 −/− mouse is compromised with regard to its ability to resist infection, heal wounds, and maintain homeostasis when challenged with microbes and/or chemicals. In an attempt to develop insight into additional possible subtle roles of CXCR2 and its ligands in the development of the mouse, we examined the expression of MIP-2, KC, CXCR2, as well as the Duffy antigen binding protein for chemokines during embryonic (p.c.) days 11.5 through 14.5 in the mouse. We observed strong correlation between the expression of MIP-2 and CXCR2 in the developing brain, cardiovascular system and condensing mesenchyme between 11.5 and 13.5 days. Moreover, the expression of KC was parallel to the expression of the Duffy antigen binding protein for chemokines with regard to temporal pattern and tissue localization. MIP-2 and CXCR2 are highly expressed in the brain, first in the cerebellum and in the head mesenchyme, the meninges and the floor plate, and by 14.5 days are also present in the telencephalon, thalamus and hypothalamus. In the developing brain KC and Duffy were prominently expressed in the neuronal tracts, the forebrain, sympathetic ganglia, and along the periphery of the neural tube. However, KC and Duffy were less prevalent in the developing cardiovascular system, lung and other organs, muscle and bone, than are CXCR2 and MIP-2. These data suggest that the roles for these chemokines and their receptors during development may be more significant than was initially thought based upon the phenotype of the mice with targeted deletion of CXCR2 and Duffy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.